Skip to main content
Log in

Sirolimus

The Evidence for Clinical Pharmacokinetic Monitoring

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

This review seeks to apply a decision-making algorithm to establish whether clinical pharmacokinetic monitoring (CPM) of sirolimus (rapamycin) in solid organ transplantation is indicated in specific patient populations. The need for CPM of sirolimus, although a regulatory requirement in Europe, has not yet been firmly established in North America and other parts of the world.

Sirolimus has demonstrated immunosuppressive efficacy in renal, pancreatic islet cell, liver and heart transplant recipients. The pharmacological response of immunosuppressive therapy with sirolimus cannot be readily evaluated; however, a relationship between trough blood sirolimus concentrations, area under the plasma concentration-time curve (AUC) and the incidence of rejection has been proposed. Furthermore, sirolimus can be measured in whole blood by several assays — high-performance liquid chromatography with detection by tandem mass spectrometry, or with ultraviolet detection, radioreceptor assay or microparticle enzyme immunoassay.

Both experimental animal and clinical data suggest that adverse events and their associated severity are correlated with blood concentrations. To prevent rejection and minimise toxicity, a therapeutic range of 4–12 μg/L (measured via Chromatographic assays) is recommended when sirolimus is used in conjunction with ciclosporin. If ciclosporin therapy is discontinued, a target trough range of 12–20 (μg/L is recommended.

Sirolimus pharmacokinetics display large inter- and intrapatient variability, which may change in specific patient populations due to disease states or concurrent immunosuppressants or other interacting drugs. Due to the long half-life of sirolimus, dosage adjustments would ideally be based on trough levels obtained more than 5–7 days after initiation of therapy or dosage change. Once the initial dose titration is complete, monitoring sirolimus trough concentrations weekly for the first month and every 2 weeks for the second month appears to be appropriate. After the first 2 months of dose titration, routine CPM of sirolimus is not necessary in all patients, but may be warranted to achieve target concentrations in certain populations of patients, but the frequency of further monitoring remains to be determined and should be individualised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Sehgal SN, Molnar-Kimber K, Ocain TD, et al. Rapamycin: a novel immunosuppressive macrolide. Med Res Rev 1994; 14: 1–22

    PubMed  CAS  Google Scholar 

  2. Kahan BD, Podbielski J, Napoli KL, et al. Immunosuppressive effects and safety of a sirolimus/cyclosporine combination regimen for renal transplantation. Transplantation 1998; 66: 1040–6

    PubMed  CAS  Google Scholar 

  3. Holt DW, Armstrong VW, Griesmacher A, et al. International Federation of Clinical Chemistry/International Association of Therapeutic Drug Monitoring and Clinical Toxicology working group on immunosuppressive drug therapy. Ther Drug Monit 2002; 24: 59–67

    PubMed  CAS  Google Scholar 

  4. Kreis H, Cisterne JM, Land W, et al. Sirolimus in association with mycophenolate mofetil induction for the prevention of acute graft rejection in renal allograft recipients. Transplantation 2000; 69: 1252–60

    PubMed  CAS  Google Scholar 

  5. Johnson RWG, Kreis H, Oberbauer R, et al. Sirolimus allows early cyclosporine withdrawal in renal transplantation resulting in improved renal function and lower blood pressure. Transplantation 2001; 72: 777–86

    PubMed  CAS  Google Scholar 

  6. Oberbauer R, Kreis H, Johnson RWG, et al. Long-term improvement in renal function with sirolimus after early cyclosporine withdrawal in renal transplant recipients: 2-year results of the rapamune maintenance regimen study. Transplant 2003; 76: 364–70

    CAS  Google Scholar 

  7. Kahan BD, for the Rapamune US Study Group. Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: a randomized multicentre study. Lancet 2000; 356: 194–202

    PubMed  CAS  Google Scholar 

  8. Groth CG, Backman L, Morales JM, et al. Sirolimus (rapamycin)-based therapy in human renal transplantation: similar efficacy and different toxicity compared with cyclosporine. Sirolimus European Renal Transplant Study Group. Transplantation 1999; 67: 1036–42

    PubMed  CAS  Google Scholar 

  9. Shapiro AMJ, Lakey JRT, Ryan EA, et al. Islet transplantation in seven patients with type I diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000; 343: 230–8

    PubMed  CAS  Google Scholar 

  10. Snell GI, Levvey BJ, Chin W, et al. Sirolimus allows renal recovery in lung and heart transplant recipients with chronic renal failure. J Heart Lung Transplant 2002; 21: 540–6

    PubMed  Google Scholar 

  11. Baran DA, Galin ID, Gass AL, et al. Current practices: immunosuppression induction, maintenance, and rejection regimens in contemporary post-heart transplant patient treatment. Curr Opin Cardiol 2002; 17: 165–70

    PubMed  CAS  Google Scholar 

  12. Heffron TG, Smallwood GA, Davis L, et al. Sirolimus-based immunosuppressive protocol for calcineurin sparing in liver transplantation. Transplant Proc 2002; 34: 1522–3

    PubMed  CAS  Google Scholar 

  13. Watson CJE, Friend PJ, Jamieson NV, et al. Sirolimus: a potent new immunosuppression for liver transplantation. Transplantation 1999; 67: 505–9

    PubMed  CAS  Google Scholar 

  14. Nair S, Eason J, Loss G, et al. Sirolimus monotherapy in nephrotoxicity due to calcineurin inhibitors in liver transplant recipients. Liver Transpl 2003; 9: 126–9

    PubMed  Google Scholar 

  15. Cotterell AH, Fisher RA, King AL, et al. Calcineurin inhibitorinduced chronic nephrotoxicity in liver transplant patients is reversible using rapamycin as the primary immunosuppressive agent. Clin Transplant 2002; 16: 49–51

    PubMed  Google Scholar 

  16. Edelman ER, Danenberg HD. Rapamycin for cardiac transplant rejection and vasculopathy: one stone, two birds? Circulation 2003; 108: 6–8

    PubMed  Google Scholar 

  17. MacDonald AS. Rapamycin in combination with cyclosporine or tacrolimus in liver, pancreas, and kidney transplantation. Transplant Proc 2003; 35 Suppl. 3A: 201–8S

    Google Scholar 

  18. MacDonald A, Scarola J, Burke JT. Clinical pharmacokinetics and therapeutic drug monitoring of sirolimus. Clin Ther 2000; 22 Suppl. B: B101–21

    PubMed  CAS  Google Scholar 

  19. Saunders RN, Metcalfe MS, Nicholson ML. Rapamycin in transplantation: a review of the evidence. Kidney Int 2001; 59: 3–16

    PubMed  CAS  Google Scholar 

  20. Kahan BF, Camardo JS. Rapamycin: clinical results and future opportunities. Transplantation 2001; 72: 1181–93

    PubMed  CAS  Google Scholar 

  21. Canadian Pharmacists Association. Rapamune (product monograph). In: Repchinsky C, editor. Compendium of Pharmaceuticals and Specialties (CPS). Ottawa (ON): Canadian Pharmacists Association, 2002

  22. Taylor PJ, Johnson AG. Quantitative analysis of sirolimus (rapamycin) in blood by high-performance liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr B Biomed Appl 1998; 718: 251–7

    CAS  Google Scholar 

  23. Wyeth Pharmaceuticals. Wyeth advisory letter [online]. Available from URL: http://www.fda.gov/medwatch/SAFETY/2002/Rapamune_Deardoc.pdf. [Accessed 2005 May 24]

  24. Kahan BD, Napoli KL, Kelly PA. Therapeutic drug monitoring of sirolimus: correlations with efficacy and toxicity. Clin Transplant 2000; 14: 97–109

    PubMed  CAS  Google Scholar 

  25. Kahan BD, Napoli KL, Podbielski J, et al. Therapeutic drug monitoring of sirolimus for optimal renal transplant outcomes. Transplant Proc 2001; 33: 1278

    PubMed  CAS  Google Scholar 

  26. Shaw LM, Holt DW, Keown P, et al. Current opinions on therapeutic drug monitoring of immunosuppressive drugs. Clin Ther 1999; 21: 1632–52

    PubMed  CAS  Google Scholar 

  27. Aspeslet LJ, Yatscoff RW. Requirements for therapeutic drug monitoring or sirolimus, an immunosuppressive agent used in renal transplantation. Clin Ther 2000; 22 Suppl. B: B86–92

    PubMed  CAS  Google Scholar 

  28. Ensom MHH, Davis GA, Cropp CD, et al. Clinical pharmacokinetics in the 21st century: does the evidence support definitive outcomes? Clin Pharmacokinet 1998; 34: 265–79

    PubMed  CAS  Google Scholar 

  29. Soldin SJ. Role of immunophilins in therapeutic drug monitoring of immunosuppressive drugs. Clin Biochem 1998; 31: 381–4

    PubMed  CAS  Google Scholar 

  30. Oliveira JG, Xavier P, Sampaio SM, et al. Compared to mycophenolate mofetil, rapamycin induces significant changes on growth factors and growth factor receptors in the early days post-kidney transplantation. Transplantation 2002; 73: 915–20

    PubMed  CAS  Google Scholar 

  31. Kahan BD. New xenobiotic immunosuppressive agents. Transplant Proc 1997; 29: 48–50

    PubMed  CAS  Google Scholar 

  32. Kelly PA, Gruber SA, Behbod F, et al. Sirolimus, a new, potent immunosuppressive agent. Pharmacotherapy 1997; 17: 1148–56

    PubMed  CAS  Google Scholar 

  33. Kaplan B, Meier-Kriesche HU, Napoli KL, et al. The effects of relative timing of sirolimus and cyclosporine microemulsion formulation coadministration on the pharmacokinetics of each agent. Clin Pharmacol Ther 1998; 63: 48–53

    PubMed  CAS  Google Scholar 

  34. Mahalati K, Kahan BD. Clinical pharmacokinetics of sirolimus. Clin Pharmacokinet 2001; 40: 573–85

    PubMed  CAS  Google Scholar 

  35. Stepowski SM, Napoli KL, Wang ME, et al. Effects of the pharmacokinetics interaction between orally administered sirolimus and cyclosporine on the synergistic prolongation of heart allograft survival in rats. Transplantation 1996; 62: 986–94

    Google Scholar 

  36. Schuurman HJ, Cottens S, Fuchs S, et al. SDZ RAD, a new rapamycin derivative: synergism with cyclosporine. Transplantation 1997; 64: 32–5

    PubMed  CAS  Google Scholar 

  37. Kelly PA, Napoli K, Kahan BD. Conversion from liquid to solid rapamycin formulations in stable renal allograft transplant recipients. Biopharm Drug Dispos 1999; 20: 249–53

    PubMed  CAS  Google Scholar 

  38. Zimmerman JJ, Kahan BD. Pharmacokinetics of sirolimus in stable renal transplant patients after multiple oral dose administration. J Clin Pharmacol 1997; 37: 405–15

    PubMed  CAS  Google Scholar 

  39. Kahan BD, Napoli KL. Role of therapeutic drug monitoring of rapamycin. Transplant Proc 1998; 30: 2189–92

    PubMed  CAS  Google Scholar 

  40. Napoli KL, Taylor PJ. From beach to bedside: history of the development of sirolimus. Ther Drug Monit 2001; 23: 559–86

    PubMed  CAS  Google Scholar 

  41. Su SF, Huang JD. Inhibition of the intestinal digoxin absorption and exsorption by quinidine. Drug Metab Dispos 1996; 24: 142–7

    PubMed  CAS  Google Scholar 

  42. Lampen A, Zhang YC, Hackbarth I, et al. Metabolism and transport of the macrolide immunosuppressant sirolimus in the small intestine. J Pharmacol Exp Ther 1998; 285: 1104–12

    PubMed  CAS  Google Scholar 

  43. Yatscoff RW, Boeckx R, Holt DW, et al. Consensus guidelines for therapeutic drug monitoring of rapamycin: report of the consensus panel. Ther Drug Monit 1995; 17: 676–80

    PubMed  CAS  Google Scholar 

  44. Trepanier DJ, Gallant H, Legatt DF. Rapamycin: distribution, pharmacokinetics and therapeutic range investigations: an update. Clin Biochem 1998; 31: 345–51

    PubMed  CAS  Google Scholar 

  45. Holt DW, Denny K, Lee TD, et al. Therapeutic drug monitoring of sirolimus: its contribution to optimal prescription. Transplant Proc 2003; 35 Suppl. 3A: 157–61S

    Google Scholar 

  46. Streit F, Christians U, Schiebel HM, et al. Sensitive and specific quantification of sirolimus (rapamycin) and its metabolites in blood of kidney graft recipients by HPLC/electrospray-mass spectrometry. Clin Chem 1996; 42: 1417–25

    PubMed  CAS  Google Scholar 

  47. Armstrong VW, Streit F. Drug monitoring of sirolimus and everolimus. Laboratoriums Medizin 2003; 27: 222–7

    CAS  Google Scholar 

  48. Brattstrom C, Sawe G, Tyden G, et al. Kinetics and dynamics of single oral doses of sirolimus in sixteen renal transplant patients. Ther Drug Monit 1997; 19: 397–406

    PubMed  CAS  Google Scholar 

  49. Ferron GM, Mishina EV, Zimmerman JJ. Population pharmacokinetics of sirolimus in kidney transplantation. Clin Pharmacol Ther 1997; 61: 416–28

    PubMed  CAS  Google Scholar 

  50. Young M, Plosker GL. Mycophenolate mofetil: a pharmacoeconomic review of its use in solid organ transplantation. Pharmacoeconomics 2002; 20: 675–713

    PubMed  CAS  Google Scholar 

  51. Solez K, Axelsen RA, Benediktsson H, et al. International standardization of criteria for the histologic diagnosis of renal allograft rejection: the Banff working classification of kidney transplant pathology. Kidney Int 1993; 44: 411–22

    PubMed  CAS  Google Scholar 

  52. First MR. Renal function as a predictor of long-term graft survival in renal transplant patients. Nephrol Dial Transplant 2003; 18 Suppl. 1: 3–6

    Google Scholar 

  53. Johnson HJ, Heim-Duthoy KL, Ptachicinski RJ. Renal transplantation. In: DiPiro JT, Talbert RL, Yee GC, editors. Pharmacotherapy: a pathophysiologic approach. 4th ed. Stamford (CT): Appleton & Lange, 1999: 771–4

    Google Scholar 

  54. Yatscoff RW, Wang P, Chan K, et al. Rapamycin: distribution, pharmacokinetics, and therapeutic range investigations. Ther Drug Monit 1995; 17: 666–71

    PubMed  CAS  Google Scholar 

  55. Morales JM, Wramner L, Kreis H, et al. Sirolimus does not exhibit nephrotoxicity compared to cyclosporine in renal transplant recipients. Am J Transplant 2002; 2: 436–42

    PubMed  CAS  Google Scholar 

  56. Gonwa TA, Hricik DE, Brinker K, et al. Improved renal function in sirolimus-treated renal transplant patients after early cyclosporine elimination. Transplantation 2002; 74: 1560–7

    PubMed  CAS  Google Scholar 

  57. Flechner SM, Goldfarb D, Modlin C, et al. Kidney transplantation without calcineurin inhibitor drugs: a prospective, randomized trial of sirolimus versus cyclosporine. Transplant 2002; 74: 1070–6

    CAS  Google Scholar 

  58. Ciancio G, Burke GW, Gaynor JJ, et al. A randomized longterm trial of tacrolimus and sirolimus versus tacrolimus and mycophenolate mofetil versus cyclosporine (Neoral) and sirolimus in renal transplantation: I. Drug interactions and rejection at one year. Transplantation 2004; 77: 244–51

    PubMed  CAS  Google Scholar 

  59. Ciancio G, Burke GW, Gaynor JJ, et al. A randomized longterm trial of tacrolimus and sirolimus versus tacrolimus and mycophenolate mofetil versus cyclosporine (Neoral) and sirolimus in renal transplantation: II. Survival, function, and protocol compliance at one year. Transplantion 2004; 77: 252–8

    CAS  Google Scholar 

  60. Van Hooff JP, Squifflet JP, Wlodarczyk Z, et al. A prospective randomized multicenter study of tacrolimus in combination with sirolimus in renal transplant recipients. Transplant 2003; 75: 1934–9

    Google Scholar 

  61. Kuypers DRJ, Claes K, Evenepoel P, et al. Long-term pharmacokinetic study of the novel combination of tacrolimus and sirolimus in de novo renal allograft recipients. Ther Drug Monit 2003; 25: 447–51

    PubMed  CAS  Google Scholar 

  62. Ruiz JC, Campistol JM, Mota A, et al. Early elimination of cyclosporine in kidney transplant recipients receiving sirolimus prevents progression of chronic pathologic allograft lesions. Transplant Proc 2003; 35: 1669–70

    PubMed  CAS  Google Scholar 

  63. Kahan BD, Julian Ba, Pescovitz MD, et al., for the Rapamune Study Group. Sirolimus reduces the incidence of acute rejection episodes despite lower cyclosporine doses in Caucasian recipients of mismatched primary renal allografts: a phase II trial: Transplantation 1999; 68: 1526–32

    PubMed  CAS  Google Scholar 

  64. Tkaczuk J, Rostaing L, Puyoo O, et al. Flow cytometry detection of intracytoplasmic cytokines after neural or sirolimus intake is an informative tool for monitoring in vivo immu-nosuppressive efficacy in renal transplant recipients. Transplant Proc 1998; 30: 2400–1

    PubMed  CAS  Google Scholar 

  65. Davis DL, Soldin SJ. An immunophilin-binding assay for sirolimus. Clin Ther 2000; 22 Suppl. B: B62–70

    PubMed  CAS  Google Scholar 

  66. Ferron GM, Conway WD, Jusko WJ. Lipophilic benzamide and anilide derivatives as high-performance liquid chromatogra-phy internal standards: application to sirolimus (rapamycin) determination. J Chromatogr B Biomed Sci Appl 1997; 703: 243–51

    PubMed  CAS  Google Scholar 

  67. Kirchner GI, Vidal C, Jacobsen W, et al. Simultaneous on-line extraction and analysis of sirolimus (rapamycin) and cyclosporine in blood by liquid chromatography-electrospray mass spectrometry. J Chromatogr B Biomed Sci Appl 1999; 721: 285–94

    PubMed  CAS  Google Scholar 

  68. Holt DW, Lee T, Jones K, et al. Validation of an assay for routine monitoring of sirolimus using HPLC with mass spectrometric detection. Clin Chem 2000; 46: 1179–83

    PubMed  CAS  Google Scholar 

  69. Salm P, Taylor PJ, Pillans PI. The quantification of sirolimus by high-performance liquid chromatography-tandem mass spectrometry and microparticle enzyme immunoassay in renal transplant recipients. Clin Ther 2000; 22: B71–85

    PubMed  CAS  Google Scholar 

  70. Kirchner GI, Jacobsen W, Deters M, et al. Fast quantification method for sirolimus and its major metabolites. Transplant Proc 2001; 33: 1091–2

    PubMed  CAS  Google Scholar 

  71. Taylor PJ, Salm P, Lynch SV, et al. Simultaneous quantification of tacrolimus and sirolimus in human blood, by high-performance liquid chromatography-tandem mass spectrometry. Ther Drug Monit 2000; 22: 608–12

    PubMed  CAS  Google Scholar 

  72. Jones K, Saadat-Lajevardi S, Lee T. An immunoassay for the measurement of sirolimus. Clin Ther 2000; 22 Suppl. B: B49–61

    PubMed  CAS  Google Scholar 

  73. Holt DW, Lee T, Johnston A. Measurement of sirolimus in whole blood using high-performance liquid chromatography with ultraviolet detection. Clin Ther 2000; 22 Suppl. B: B38–48

    PubMed  CAS  Google Scholar 

  74. Napoli KL, Kahan BD. Sample clean-up and high-performance liquid Chromatographic techniques for measurement of whole blood rapamycin concentrations. J Chromatogr B Biomed Appl 1994; 654: 111–20

    PubMed  CAS  Google Scholar 

  75. Svensson JO, Brattstrom C, Sawe J. Determination of rapamycin in whole blood by HPLC. Ther Drug Monit 1997; 19: 112–6

    PubMed  CAS  Google Scholar 

  76. Yatscoff RW, Faraci CJ, Bolingbroke P. Measurement of rapamycin in whole blood using reverse-phase high-performance liquid chromatography. Ther Drug Monit 1992; 12: 138–41

    Google Scholar 

  77. Napoli KL, Kahan BD. Routine clinical monitoring of sirolimus (rapamycin) whole-blood concentrations by HPLC with ultraviolet detection. Clin Chem 1996; 42: 1943–8

    PubMed  CAS  Google Scholar 

  78. Maleki S, Graves S, Becker S, et al. Therapeutic monitoring of sirolimus in human whole-blood samples by high-performance liquid chromatography. Clin Ther 2000; 22 Suppl. B: B25–37

    PubMed  CAS  Google Scholar 

  79. Napoli KL. A practical guide to the analysis of sirolimus using high-performance liquid chromatography with ultraviolet detection. Clin Ther 2000; 22: B14–24

    PubMed  CAS  Google Scholar 

  80. French DC, Saltzgueber M, Hicks DR, et al. HPLC assay with ultraviolet detection for therapeutic drug monitoring of sirolimus. Clin Chem 2001; 47: 1316–9

    PubMed  CAS  Google Scholar 

  81. Davis DL, Murthy JN, Napoli KL, et al. Comparison of steadystate trough sirolimus samples by HPLC and a radioreceptor assay. Clin Biochem 2000; 33: 31–6

    PubMed  CAS  Google Scholar 

  82. Goodyear N, Murthy JN, Gallant HL, et al. Comparison of binding-characteristics of four rapamycin metabolites to the 14 and 52 kDa immunophilins with their pharmacologic activity measured by the mixed-lymphocyte culture assay. Clin Biochem 1996; 29: 309–13

    PubMed  CAS  Google Scholar 

  83. Salm P, Taylor PJ, Pillans PI. Analytical performance of microparticle enzyme immunoassay and HPLC-tandem mass spectrometry in the determination of sirolimus in whole blood. Clin Chem 1999; 45(12): 2278–80

    PubMed  CAS  Google Scholar 

  84. Wallemacq PE, Vanbinst R, Asta S, et al. High-throughput liquid chromatography-tandem mass spectrometric analysis of sirolimus in whole blood. Clin Chem Lab Med 2003; 41: 921–5

    PubMed  CAS  Google Scholar 

  85. Kahan BD, Keown P, Levy GA, et al. Therapeutic drug monitoring of immunosuppressant drugs in clinical practice. Clin Ther 2002; 24: 330–50

    PubMed  CAS  Google Scholar 

  86. Goodyear N, Napoli KL, Murthy JN, et al. Radioreceptor assay for sirolimus in patients with decreased platelet counts. Clin Biochem 1997; 30: 539–43

    PubMed  CAS  Google Scholar 

  87. Volosov A, Napoli KL, Soldin SJ. Simultaneous simple and fast quantification of three major immunosuppressants by liquid chromatography-tandem mass-spectrometry. Clin Biochem 2001; 34: 285–90

    PubMed  CAS  Google Scholar 

  88. Cogill JL, Taylor PJ, Westley IS, et al. Evaluation of the tacrolimus II microparticle enzyme immunoassay (MEIAII) in liver and renal transplant recipients. Clin Chem 1998; 44: 1942–6

    PubMed  CAS  Google Scholar 

  89. Salm P, Tresillian MJ, Taylor PJ, et al. Stability of sirolimus (rapamycin) in whole blood. Ther Drug Monit 2000; 22: 423–6

    PubMed  CAS  Google Scholar 

  90. Morelon E, Stern M, Israel-Biet D, et al. Characteristics of sirolimus-associated interstitial pneumonitis in renal transplant patients. Transplantation 2001; 72: 787–90

    PubMed  CAS  Google Scholar 

  91. Wacher VJ, Wu CY, Benet LZ. Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and p-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol Carcinog 1995; 13: 129–34

    PubMed  CAS  Google Scholar 

  92. Lown KS, Mayo RR, Leichtman AB, et al. Role of intestinal p-glycoprotein (MDR1) in interpatient variation in the oral bioavailability of cyclosporine. Clin Pharmacol Ther 1997; 62: 248–60

    PubMed  CAS  Google Scholar 

  93. Sattler M, Guengerich FP, Yun CH, et al. Cytochrome P-450 3A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat. Drug Metab Dispos 1992; 20: 753–61

    PubMed  CAS  Google Scholar 

  94. Tejani A, Alexander S, Ettenger R, et al. Safety and pharmacokinetics of ascending single doses sirolimus (Rapamune, rapamycin) in pediatrie patients with stable chronic renal failure undergoing dialysis. Pediatrie Transplant 2004; 8: 151–60

    CAS  Google Scholar 

  95. Kumi KA. 21083A rapamune (sirolimus) oral solution: clinical pharmacology and biopharmaceutics review(s) [online]. Available from URL: http://www.fda.gov/cder/foi/nda/99/21083a_rapamune_clinphrmr.pdf. [Accessed 2005 May 20]

  96. Zimmerman JJ, Ferron GM, Lim HK, et al. The effect of a highfat meal on the oral bioavailability of the immunosuppressant sirolimus (rapamycin). J Clin Pharmacol 1999; 39: 1155–61

    PubMed  CAS  Google Scholar 

  97. Kovarik JM, Hsu CH, McMahon L, et al. Population pharmacokinetics of everolimus in de novo renal transplant patients: impact of ethnicity and comedications. Clin Pharmacol Ther 2001; 70: 247–54

    PubMed  CAS  Google Scholar 

  98. Kahan B. Pivotal phase II multicenter, randomized, blinded trial of sirolimus versus azathioprine in combination with cyclosporine and prednisone in primary renal transplants [abstract]. Transplantation 1999; 67 Suppl. 9: 68

    Google Scholar 

  99. Neylan JF, Wickersham P, Jaffe J. Effect of race on efficacy and safety of sirolimus vs AZA + standard immunotherapy in renal transplantation [abstract no. 924]. Annual Meeting of the American Society of Transplantation and the American Society of Transplant Surgeons; 1999 May 15–21; Chicago

    Google Scholar 

  100. Michalets EL. Update: clinically significant cytochrome P-450 drug interactions. Pharmacotherapy 1998; 18: 84–112

    PubMed  CAS  Google Scholar 

  101. Matheny CJ, Lamb MW, Brouwer KR, et al. Pharmacokinetic and pharmacodynamic implications of P-glycoprotein modulation. Pharmacotherapy 2001; 21: 778–96

    PubMed  CAS  Google Scholar 

  102. Renders L, Czock D, Schocklmann H, et al. Determination of the pharmacokinetics of cerivastatin when administered in combination with sirolimus and cyclosporin A in patients with kidney transplant, and review of the relevant literature. Int J Clin Pharmacol Ther 2003; 41: 499–503

    PubMed  CAS  Google Scholar 

  103. Jusko WJ, Ferron GM, Mis SM, et al. Pharmacokinetics of predinsolone during administration of sirolimus in patients with renal transplants. J Clin Pharmacol 1996; 36: 1100–6

    PubMed  CAS  Google Scholar 

  104. Kimball PM, Kerman RH, Kahan BD. Production of synergistic but nonidentical mechanisms of immunosuppression by rapamycin and cyclosporine. Transplantation 1991; 51: 486–90

    PubMed  CAS  Google Scholar 

  105. Zimmerman JJ, Harper D, Getsy J, et al. Pharmacokinetic interactions between sirolimus and microemulsion cyclosporine when orally administered jointly and 4 hours apart in healthy volunteers. J Clin Pharmacol 2003; 43: 1168–76

    PubMed  CAS  Google Scholar 

  106. Ruschitzka F, Meier PJ, Turina M, et al. Acute heart transplant rejection due to St John’s wort. Lancet 2000; 355: 548–9

    PubMed  CAS  Google Scholar 

  107. Barone GW, Gurley BJ, Ketel BL, et al. Drug interaction between St John’s Wort and cyclosporine. Ann Pharmacother 2000; 34: 1013–6

    PubMed  CAS  Google Scholar 

  108. Bauer S, Stornier E, Johne A, et al. Alterations in cyclosporin A pharmacokinetics and metabolism during treatment with St John’s wort in renal transplant patients. Br J Clin Pharmacol 2003; 55: 203–11

    PubMed  CAS  Google Scholar 

  109. Breidenbach T, Hoffmann MW, Becker T, et al. Drag interaction of St John’s wort with cyclosporin [letter]. Lancet 2000; 355: 1912

    PubMed  CAS  Google Scholar 

  110. Mandelbaum A, Pertzborn F, Martin-Facklam M, et al. Unexplained decrease of cyclosporin trough levels in a compliant renal transplant patient. Nephrol Dial Transplant 2000; 15: 1473–4

    PubMed  CAS  Google Scholar 

  111. Breidenbach TH, Kliem V, Burg M, et al. Profound drop of cyclosporine A whole blood trough levels caused by St John’s wort (hypericum perforatum). Transplantation 2000; 69: 2229–30

    PubMed  CAS  Google Scholar 

  112. Mai I, Störmer E, Bauer S, et al. Impact of St John’s wort treatment on the pharmacokinetics of tacrolimus and mycophenolic acid in renal transplant patients. Nephrol Dial Transplant 2003; 18: 819–22

    PubMed  CAS  Google Scholar 

  113. Bolley R, Zulke C, Kammerl M, et al. Tacrolimus-induced nephrotoxicity unmasked by induction of the CYP3A4 system with St John’s wort [letter]. Transplantation 2002; 73: 1009

    PubMed  Google Scholar 

  114. Hennessy M, Kelleher D, Spiers JP, et al. St John’s wort increases expression of P-glycoprotein: implications for drug interactions. Br J Pharmacol 2002; 53: 75–82

    CAS  Google Scholar 

  115. Roby CA, Anderson GD, Kantor E, et al. St. John’s wort: effect on CYP3A4 activity. Clin Pharmacol Ther 2000; 67: 451–7

    PubMed  CAS  Google Scholar 

  116. Dürr D, Stieger B, Kullak-Ublick GA, et al. St John’s wort induces intestinal P-glycoprotein/MDRl and intestinal and hepatic CYP3A4. Clin Pharmacol Ther 2000; 68: 598–604

    PubMed  Google Scholar 

  117. Obach RS. Inhibition of human cytochrome P450 enzymes by constituents of St John’s wort, an herbal preparation used in the treatment of depression. J Pharmacol Exp Ther 2000; 294: 88–95

    PubMed  CAS  Google Scholar 

  118. Canadian Pharmacists Association. Tacrolimus (product monograph). In: Repchinsky C, editor. Compendium of Pharmaceuticals and Specialties (CPS). Ottawa (ON): Canadian Pharmacists Association, 2002

    Google Scholar 

  119. Tsunoda SM, Aweeka FT. Drag concentration monitoring of immunosuppressive agents: focus on tacrolimus, mycophenolate mofetil and sirolimus. BioDrags 2000; 14: 355–69

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were provided to assist in the preparation of this manuscript. The authors have no potential conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary H. H. Ensom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stenton, S.B., Partovi, N. & Ensom, M.H.H. Sirolimus. Clin Pharmacokinet 44, 769–786 (2005). https://doi.org/10.2165/00003088-200544080-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200544080-00001

Keywords

Navigation