Skip to main content
Log in

Pharmacokinetics of Opioids in Liver Disease

  • Review Articles
  • Special Populations
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The liver is the major site of biotransformation for most opioids. Thus, the disposition of these drugs may be affected in patients with liver insufficiency. The major metabolic pathway for most opioids is oxidation. The exceptions are morphine and buprenorphine, which primarily undergo glucuronidation, and remifentanil, which is cleared by ester hydrolysis.

Oxidation of opioids is reduced in patients with hepatic cirrhosis, resulting in decreased drug clearance [for pethidine (meperidine), dextropropoxyphene, pentazocine, tramadol and alfentanil] and/or increased oral bioavailability caused by a reduced first-pass metabolism (for pethidine, dextropropoxyphene, pentazocine and dihydrocodeine). Although glucuronidation is thought to be less affected in liver cirrhosis, the clearance of morphine was found to be decreased and oral bioavailability increased.

The consequence of reduced drug metabolism is the risk of accumulation in the body, especially with repeated administration. Lower doses or longer administration intervals should be used to remedy this risk. Special risks are known for pethidine, with the potential for the accumulation of norpethidine, a metabolite that can cause seizures, and for dextropropoxyphene, for which several cases of hepatotoxicity have been reported. On the other hand, the analgesic activity of codeine and tilidine depends on transformation into the active metabolites, morphine and nortilidine, respectively. If metabolism is decreased in patients with chronic liver disease, the analgesic action of these drugs may be compromised. Finally, the disposition of a few opioids, such as fentanyl, sufentanil and remifentanil, appears to be unaffected in liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Laidlaw J, Read AE, Sherlock S. Morphine tolerance in hepatic cirrhosis. Gastroenterology 1961; 40: 389–96.

    PubMed  CAS  Google Scholar 

  2. Fraser CL, Arieff AI. Hepatic encephalopathy. N Engl J Med 1985; 313(14): 865–73.

    PubMed  CAS  Google Scholar 

  3. Holford NH, Sheiner LB. Pharmacokinetic and pharmacodynamic modeling in vivo. CRC Crit Rev Bioeng 1981; 5(4): 273–322.

    CAS  Google Scholar 

  4. Huet PM, Villeneuve JP. Determinants of drug disposition in patients with cirrhosis. Hepatology 1983; 3(6): 913–8.

    PubMed  CAS  Google Scholar 

  5. Pessayre D, Lebrec D, Descatoire V, et al. Mechanism for reduced drug clearance in patients with cirrhosis. Gastroenterology 1978; 74(3): 566–71.

    PubMed  CAS  Google Scholar 

  6. Klotz U, Avant GR, Hoyumpa A, et al. The effects of age and liver disease on the disposition and elimination of diazepam in adult man. J Clin Invest 1975; 55(2): 347–59.

    PubMed  CAS  Google Scholar 

  7. Roberts RK, Wilkinson GR, Branch RA, et al. Effect of age and parenchymal liver disease on the disposition and elimination of chlordiazepoxide (librium). Gastroenterology 1978; 75(3): 479–85.

    PubMed  CAS  Google Scholar 

  8. Neal EA, Meffin PJ, Gregory PB, et al. Enhanced bioavailability and decreased clearance of analgesics in patients with cirrhosis. Gastroenterology 1979; 77(1): 96–102.

    PubMed  CAS  Google Scholar 

  9. Ghabrial H, Desmond PV, Watson KJ, et al. The effects of age and chronic liver disease on the elimination of temazepam. Eur J Clin Pharmacol 1986; 30(1): 93–7.

    PubMed  CAS  Google Scholar 

  10. Kraus JW, Desmond PV, Marshall JP, et al. Effects of aging and liver disease on disposition of lorazepam. Clin Pharmacol Ther 1978; 24(4): 411–9.

    PubMed  CAS  Google Scholar 

  11. Shull HJ, Wilkinson GR, Johnson R, et al. Normal disposition of oxazepam in acute viral hepatitis and cirrhosis. Ann Intern Med 1976; 84(4): 420–5.

    PubMed  CAS  Google Scholar 

  12. Pacifici GM, Viani A, Franchi M, et al. Conjugation pathways in liver disease. Br J Clin Pharmacol 1990; 30(3): 427–35.

    PubMed  CAS  Google Scholar 

  13. Macdonald JI, Wallace SM, Mahachai V, et al. Both phenolic and acyl glucuronidation pathways of diflunisal are impaired in liver cirrhosis. Eur J Clin Pharmacol 1992; 42(5): 471–4.

    PubMed  CAS  Google Scholar 

  14. Meuldermans WE, Hurkmans RM, Heykants JJ. Plasma protein binding and distribution of fentanyl, sufentanil, alfentanil and lofentanil in blood. Arch Int Pharmacodyn Ther 1982; 257(1): 4–19.

    PubMed  CAS  Google Scholar 

  15. Bovill JG, Sebel PS, Blackburn CL, et al. The pharmacokinetics of alfentanil (R39209): a new opioid analgesic. Anesthesiology 1982; 57(6): 439–43.

    PubMed  CAS  Google Scholar 

  16. Hug Jr CC, Burm AG, de Lange S. Alfentanil pharmacokinetics in cardiac surgical patients. Anesth Analg 1994; 78(2): 231–9.

    PubMed  Google Scholar 

  17. Davis PJ, Cook DR. Clinical pharmacokinetics of the newer intravenous anaesthetic agents. Clin Pharmacokinet 1986; 11(1): 18–35.

    PubMed  CAS  Google Scholar 

  18. Goresky GV, Koren G, Sabourin MA, et al. The pharmacokinetics of alfentanil in children. Anesthesiology 1987; 67(5): 654–9.

    PubMed  CAS  Google Scholar 

  19. Kuhlman Jr JJ, Lalani S, Magluilo Jr J, et al. Human pharmacokinetics of intravenous, sublingual, and buccal buprenorphine. J Anal Toxicol 1996; 20(6): 369–78.

    PubMed  CAS  Google Scholar 

  20. Bullingham RE, McQuay HJ, Porter EJ, et al. Sublingual buprenorphine used postoperatively: ten hour plasma drug concentration analysis. Br J Clin Pharmacol 1982; 13(5): 665–73.

    PubMed  CAS  Google Scholar 

  21. Mendelson J, Upton RA, Everhart ET, et al. Bioavailability of sublingual buprenorphine. J Clin Pharmacol 1997; 37(1): 31–7.

    PubMed  CAS  Google Scholar 

  22. Hand CW, Sear JW, Uppington J, et al. Buprenorphine disposition in patients with renal impairment: single and continuous dosing, with special reference to metabolites. Br J Anaesth 1990; 64(3): 276–82.

    PubMed  CAS  Google Scholar 

  23. Heel RC, Brogden RN, Speight TM, et al. Buprenorphine: a review of its pharmacological properties and therapeutic efficacy. Drugs 1979; 17(2): 81–110.

    PubMed  CAS  Google Scholar 

  24. Bullingham RE, McQuay HJ, Moore A, et al. Buprenorphine kinetics. Clin Pharmacol Ther 1980; 28(5): 667–72.

    PubMed  CAS  Google Scholar 

  25. Hull JH, Findlay JW, Rogers JF, et al. An evaluation of the effects of smoking on codeine pharmacokinetics and bioavailability in normal human volunteers. Drug Intell Clin Pharm 1982; 16(11): 849–54.

    PubMed  CAS  Google Scholar 

  26. Findlay JW, Butz RF, Welch RM. Codeine kinetics as determined by radioimmunoassay. Clin Pharmacol Ther 1977; 22(4): 439–46.

    PubMed  CAS  Google Scholar 

  27. Band CJ, Band PR, Deschamps M, et al. Human pharmacokinetic study of immediate-release (codeine phosphate) and sustained-release (codeine Contin) codeine. J Clin Pharmacol 1994; 34(9): 938–43.

    PubMed  CAS  Google Scholar 

  28. Gibson TP. Pharmacokinetics, efficacy, and safety of analgesia with a focus on tramadol HC1. Am J Med 1996; 101(1A): 47S–53S.

    PubMed  CAS  Google Scholar 

  29. Bodd E, Beylich KM, Christophersen AS, et al. Oral administration of codeine in the presence of ethanol. a pharmacokinetic study in man. Pharmacol Toxicol 1987; 61(5): 297–300.

    PubMed  CAS  Google Scholar 

  30. Lintz W, Barth H, Becker R, et al. Pharmacokinetics of tramadol and bioavailability of enterai tramadol formulations: 2nd communication. Drops with ethanol. Arzneimittel Forschung 1998; 48(5): 436–45.

    PubMed  CAS  Google Scholar 

  31. Gram LF, Schou J, Way WL, et al. d-Propoxyphene kinetics after single oral and intravenous doses in man. Clin Pharmacol Ther 1979; 26(4): 473–82.

    PubMed  CAS  Google Scholar 

  32. Inturrisi CE, Colburn WA, Verebey K, et al. Propoxyphene and norpropoxyphene kinetics after single and repeated doses of propoxyphene. Clin Pharmacol Ther 1982; 31(2): 157–67.

    PubMed  CAS  Google Scholar 

  33. Brosen K, Gram LF, Schou J, et al. Dextropropoxyphene kinetics after single and repeated oral doses in man. Eur J Clin Pharmacol 1985; 29(1): 79–84.

    PubMed  CAS  Google Scholar 

  34. Rowell FJ, Seymour RA, Rawlins MD. Pharmacokinetics of intravenous and oral dihydrocodeine and its acid metabolites. Eur J Clin Pharmacol 1983; 25(3): 419–24.

    PubMed  CAS  Google Scholar 

  35. Haberer JP, Schoeffler P, Couderc E, et al. Fentanyl pharmacokinetics in anaesthetized patients with cirrhosis. Br J Anaesth 1982; 54(12): 1267–70.

    PubMed  CAS  Google Scholar 

  36. Bentley JB, Borel JD, Nenad Jr RE, et al. Age and fentanyl pharmacokinetics. Anesth Analg 1982; 61(12): 968–71.

    PubMed  CAS  Google Scholar 

  37. Mather LE. Clinical pharmacokinetics of fentanyl and its newer derivatives. Clin Pharmacokinet 1983; 8(5): 422–46.

    PubMed  CAS  Google Scholar 

  38. McClain DA, Hug Jr CC. Intravenous fentanyl kinetics. Clin Pharmacol Ther 1980; 28(1): 106–14.

    PubMed  CAS  Google Scholar 

  39. Hudson RJ, Thomson IR, Cannon JE, et al. Pharmacokinetics of fentanyl in patients undergoing abdominal aortic surgery. Anesthesiology 1986; 64(3): 334–8.

    PubMed  CAS  Google Scholar 

  40. Berkowitz BA. The relationship of pharmacokinetics to pharmacological activity: morphine, methadone and naloxone. Clin Pharmacokinet 1976; 1(3): 219–30.

    PubMed  CAS  Google Scholar 

  41. Nilsson MI, Meresaar U, Anggard E. Clinical pharmacokinetics of methadone. Acta Anaesthesiol Scand Suppl 1982; 74: 66–9.

    PubMed  CAS  Google Scholar 

  42. Meresaar U, Nilsson MI, Holmstrand J, et al. Single dose pharmacokinetics and bioavailability of methadone in man studied with a stable isotope method. Eur J Clin Pharmacol 1981; 20(6): 473–8.

    PubMed  CAS  Google Scholar 

  43. Inturrisi CE, Colburn WA, Kaiko RF, et al. Pharmacokinetics and pharmacodynamics of methadone in patients with chronic pain. Clin Pharmacol Ther 1987; 41(4): 392–401.

    PubMed  CAS  Google Scholar 

  44. Gourlay GK, Wilson PR, Glynn CJ. Pharmacodynamics and pharmacokinetics of methadone during the perioperative period. Anesthesiology 1982; 57(6): 458–67.

    PubMed  CAS  Google Scholar 

  45. Sawe J. High-dose morphine and methadone in cancer patients: clinical pharmacokinetic considerations of oral treatment. Clin Pharmacokinet 1986; 11(2): 87–106.

    PubMed  CAS  Google Scholar 

  46. Aitkenhead AR, Vater M, Achola K, et al. Pharmacokinetics of single-dose i.v. morphine in normal volunteers and patients with end-stage renal failure. Br J Anaesth 1984; 56(8): 813–9.

    PubMed  CAS  Google Scholar 

  47. Lotsch J, Weiss M, Kobal G, et al. Pharmacokinetics of morphine-6-glucuronide and its formation from morphine after intravenous administration. Clin Pharmacol Ther 1998; 63(6): 629–39.

    PubMed  CAS  Google Scholar 

  48. Osborne R, Joel S, Grebenik K, et al. The pharmacokinetics of morphine and morphine glucuronides in kidney failure. Clin Pharmacol Ther 1993; 54(2): 158–67.

    PubMed  CAS  Google Scholar 

  49. Mazoit JX, Sandouk P, Zetlaoui P, et al. Pharmacokinetics of unchanged morphine in normal and cirrhotic subjects. Anesth Analg 1987; 66(4): 293–8.

    PubMed  CAS  Google Scholar 

  50. Mather LE. Opioid pharmacokinetics in relation to their effects. Anaesth Intensive Care 1987; 15(1): 15–22.

    PubMed  CAS  Google Scholar 

  51. Portenoy RK, Foley KM, Stulman J, et al. Plasma morphine and morphine-6-glucuronide during chronic morphine therapy for cancer pain. Plasma profiles, steady-state concentrations and the consequences of renal failure. Pain 1991; 47(1): 13–9.

    PubMed  CAS  Google Scholar 

  52. Hasselstrom J, Alexander N, Bringel C, et al. Single-dose and steady-state kinetics of morphine and its metabolites in cancer patients: a comparison of two oral formulations. Eur J Clin Pharmacol 1991; 40(6): 585–91.

    PubMed  CAS  Google Scholar 

  53. Khojasteh A, Evans W, Reynolds RD, et al. Controlled-release oral morphine sulfate in the treatment of cancer pain with pharmacokinetic correlation. J Clin Oncol 1987; 5(6): 956–61.

    PubMed  CAS  Google Scholar 

  54. Hoskin PJ, Hanks GW, Aherne GW, et al. The bioavailability and pharmacokinetics of morphine after intravenous, oral and buccal administration in healthy volunteers. Br J Clin Pharmacol 1989; 27(4): 499–505.

    PubMed  CAS  Google Scholar 

  55. Lotsch J, Stockmann A, Kobal G, et al. Pharmacokinetics of morphine and its glucuronides after intravenous infusion of morphine and morphine-6-glucuronide in healthy volunteers. Clin Pharmacol Ther 1996; 60(3): 316–25.

    PubMed  CAS  Google Scholar 

  56. Hanna MH, Peat SJ, Knibb AA, et al. Disposition of morphine-6-glucuronide and morphine in healthy volunteers. Br J Anaesth 1991; 66(1): 103–7.

    PubMed  CAS  Google Scholar 

  57. Verbeeck RK, Branch RA, Wilkinson GR. Meperidine disposition in man. influence of urinary pH and route of administration. Clin Pharmacol Ther 1981; 30(5): 619–28.

    PubMed  CAS  Google Scholar 

  58. Szeto HH, Inturrisi CE, Houde R, et al. Accumulation of normeperidine, an active metabolite of meperidine, in patients with renal failure of cancer. Ann Intern Med 1977; 86(6): 738–41.

    PubMed  CAS  Google Scholar 

  59. Vollmer KO, Thomann P, Hengy H. Pharmacokinetics of tilidine and metabolites in man. Arzneimittel Forschung 1989; 39(10): 1283–8.

    PubMed  CAS  Google Scholar 

  60. Ehrnebo M, Boreus LO, Lonroth U. Bioavailability and firstpass metabolism of oral pentazocine in man. Clin Pharmacol Ther 1977; 22(6): 888–92.

    PubMed  CAS  Google Scholar 

  61. Hamunen K, Olkkola KT, Seppala T, et al. Pharmacokinetics and pharmacodynamics of pentazocine in children. Pharmacol Toxicol 1993; 73(2): 120–3.

    PubMed  CAS  Google Scholar 

  62. Ehrnebo M, Boreus LO, Lonroth U. Single-dose kinetics and bioavailability of pentazocine. Acta Anaesthesiol Scand 1982; 74 Suppl.: 70–1.

    Google Scholar 

  63. Herman RJ, McAllister CB, Branch RA, et al. Effects of age on meperidine disposition. Clin Pharmacol Ther 1985; 37(1): 19–24.

    PubMed  CAS  Google Scholar 

  64. Koska AJd, Kramer WG, Romagnoli A, et al. Pharmacokinetics of high-dose meperidine in surgical patients. Anesth Analg 1981; 60(1): 8–11.

    PubMed  Google Scholar 

  65. Stambaugh JE, Wainer IW, Sanstead JK, et al. The clinical pharmacology of meperidine: comparison of routes of administration. J Clin Pharmacol 1976; 16(5–6): 245–56.

    PubMed  CAS  Google Scholar 

  66. Mather LE, Tucker GT, Pflug AE, et al. Meperidine kinetics in man: intravenous injection in surgical patients and volunteers. Clin Pharmacol Ther 1975; 17(1): 21–30.

    PubMed  CAS  Google Scholar 

  67. Westmoreland CL, Hoke JF, Sebel PS, et al. Pharmacokinetics of remifentanil (GI87084B) and its major metabolite (GI90291) in patients undergoing elective inpatient surgery. Anesthesiology 1993; 79(5): 893–903.

    PubMed  CAS  Google Scholar 

  68. Egan TD, Lemmens HJ, Fiset P, et al. The pharmacokinetics of the new short-acting opioid remifentanil (GI87084B) in healthy adult male volunteers. Anesthesiology 1993; 79(5): 881–92.

    PubMed  CAS  Google Scholar 

  69. Glass PS, Hardman D, Kamiyama Y, et al. Preliminary pharmacokinetics and pharmacodynamics of an ultra-short-acting opioid, remifentanil (GI87084B). Anesth Analg 1993; 77(5): 1031–40.

    PubMed  CAS  Google Scholar 

  70. Minto CF, Schnider TW, Egan TD, et al. Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil: I. Model development. Anesthesiology 1997; 86(1): 10–23.

    PubMed  CAS  Google Scholar 

  71. Bovill JG, Sebel PS, Blackburn CL, et al. The pharmacokinetics of sufentanil in surgical patients. Anesthesiology 1984; 61(5): 502–6.

    PubMed  CAS  Google Scholar 

  72. Lehmann KA, Sipakis K, Gasparini R, et al. Pharmacokinetics of sufentanil in general surgical patients under different conditions of anaesthesia. Acta Anaesthesiol Scand 1993; 37(2): 176–80.

    PubMed  CAS  Google Scholar 

  73. Gepts E, Shafer SL, Camu F, et al. Linearity of pharmacokinetics and model estimation of sufentanil. Anesthesiology 1995; 83(6): 1194–204.

    PubMed  CAS  Google Scholar 

  74. Chauvin M, Ferrier C, Haberer JP, et al. Sufentanil pharmacokinetics in patients with cirrhosis. Anesth Analg 1989; 68(1): 1–4.

    PubMed  CAS  Google Scholar 

  75. Sear JW. Sufentanil disposition in patients undergoing renal transplantation: influence of choice of kinetic model. Br J Anaesth 1989; 63(1): 60–7.

    PubMed  CAS  Google Scholar 

  76. Lintz W, Barth H, Osterloh G, et al. Bioavailability of enteral tramadol formulations: 1st communication. Capsules. Arzneimittel Forschung 1986; 36(8): 1278–83.

    PubMed  CAS  Google Scholar 

  77. Osborne R, Joel S, Trew D, et al. Morphine and metabolite behavior after different routes of morphine administration: demonstration of the importance of the active metabolite morphine-6-glucuronide. Clin Pharmacol Ther 1990; 47(1): 12–9.

    PubMed  CAS  Google Scholar 

  78. Brunk SF, Delle M. Morphine metabolism in man. Clin Pharmacol Ther 1974; 16(1): 51–7.

    PubMed  CAS  Google Scholar 

  79. D’Honneur G, Gilton A, Sandouk P, et al. Plasma and cerebrospinal fluid concentrations of morphine and morphine glucuronides after oral morphine. The influence of renal failure. Anesthesiology 1994; 81(1): 87–93.

    PubMed  Google Scholar 

  80. Wolff T, Samuelsson H, Hedner T. Morphine and morphine metabolite concentrations in cerebrospinal fluid and plasma in cancer pain patients after slow-release oral morphine administration. Pain 1995; 62(2): 147–54.

    PubMed  CAS  Google Scholar 

  81. Wolff T, Samuelsson H, Hedner T. Concentrations of morphine and morphine metabolites in CSF and plasma during continuous subcutaneous morphine administration in cancer pain patients. Pain 1996; 68(2–3): 209–16.

    PubMed  CAS  Google Scholar 

  82. Stanski DR, Greenblatt DJ, Lowenstein E. Kinetics of intravenous and intramuscular morphine. Clin Pharmacol Ther 1978; 24(1): 52–9.

    PubMed  CAS  Google Scholar 

  83. Crotty B, Watson KJ, Desmond PV, et al. Hepatic extraction of morphine is impaired in cirrhosis. Eur J Clin Pharmacol 1989; 36(5): 501–6.

    PubMed  CAS  Google Scholar 

  84. Hasselstrom J, Sawe J. Morphine pharmacokinetics and metabolism in humans. Enterohepatic cycling and relative contribution of metabolites to active opioid concentrations. Clin Pharmacokinet 1993; 24(4): 344–54.

    PubMed  CAS  Google Scholar 

  85. Sawe J, Odar-Cederlof I. Kinetics of morphine in patients with renal failure. Eur J Clin Pharmacol 1987; 32(4): 377–82.

    PubMed  CAS  Google Scholar 

  86. Mazoit JX, Sandouk P, Scherrmann JM, et al. Extrahepatic metabolism of morphine occurs in humans. Clin Pharmacol Ther 1990; 48(6): 613–8.

    PubMed  CAS  Google Scholar 

  87. Richardson PD, Withrington PG. Liver blood flow: I. Intrinsic and nervous control of liver blood flow. Gastroenterology 1981; 81(1): 159–73.

    PubMed  CAS  Google Scholar 

  88. Westerling D, Persson C, Hoglund P. Plasma concentrations of morphine, morphine-3-glucuronide, and morphine-6-glucuronide after intravenous and oral administration to healthy volunteers. relationship to nonanalgesic actions. Ther Drug Monit 1995; 17(3): 287–301.

    PubMed  CAS  Google Scholar 

  89. Glare PA, Walsh TD. Clinical pharmacokinetics of morphine. Ther Drug Monit 1991; 13(1): 1–23.

    PubMed  CAS  Google Scholar 

  90. Gong QL, Hedner J, Bjorkman R, et al. Morphine-3-glucuronide may functionally antagonize morphine-6-glucuronide induced antinociception and ventilatory depression in the rat [see comments]. Pain 1992; 48(2): 249–55.

    PubMed  CAS  Google Scholar 

  91. Smith MT, Watt JA, Cramond T. Morphine-3-glucuronide: a potent antagonist of morphine analgesia. Life Sci 1990; 47(6): 579–85.

    PubMed  CAS  Google Scholar 

  92. Faura CC, Olaso MJ, Garcia Cabanes C, et al. Lack of morphine-6-glucuronide antinociception after morphine treatment. Is morphine-3-glucuronide involved?. Pain 1996; 65(1): 25–30.

    PubMed  CAS  Google Scholar 

  93. Smith GD, Smith MT. Morphine-3-glucuronide. evidence to support its putative role in the development of tolerance to the antinociceptive effects of morphine in the rat. Pain 1995; 62(1): 51–60.

    PubMed  CAS  Google Scholar 

  94. Makman MH, Dobrenis K, Surratt CK. Properties of mu 3 opiate alkaloid receptors in macrophages, astrocytes, and HL-60 human promyelocytic leukemia cells. Adv Exp Med Biol 1998; 437: 137–48.

    PubMed  CAS  Google Scholar 

  95. Loser SV, Meyer J, Freudenthaler S, et al. Morphine-6-O-beta-D-glucuronide but not morphine-3-O-beta-D-glucuronide binds to mu-, delta- and kappa-specific opioid binding sites in cerebral membranes. Naunyn Schmiedebergs Arch Pharmacol 1996; 354(2): 192–7.

    PubMed  CAS  Google Scholar 

  96. Makman MH, Dvorkin B, Stefano GB. Murine macrophage cell lines contain mu 3-opiate receptors. Eur J Pharmacol 1995; 273(3): R5–6.

    PubMed  CAS  Google Scholar 

  97. Bartlett SE, Smith MT. The apparent affinity of morphine-3-glucuronide at mul-opioid receptors results from morphine contamination. demonstration using HPLC and radioligand binding. Life Sci 1995; 57(6): 609–15.

    PubMed  CAS  Google Scholar 

  98. Lipkowski AW, Carr DB, Langlade A, et al. Morphine-3-glucuronide: silent regulator of morphine actions. Life Sci 1994; 55(2): 149–54.

    PubMed  CAS  Google Scholar 

  99. Gardmark M, Karlsson MO, Jonsson F, et al. Morphine-3-glucuronide has a minor effect on morphine antinociception: pharmacodynamic modeling. J Pharm Sci 1998; 87(7): 813–20.

    PubMed  CAS  Google Scholar 

  100. Ouellet DM, Pollack GM. Effect of prior morphine-3-glucuronide exposure on morphine disposition and antinociception. Biochem Pharmacol 1997; 53(10): 1451–7.

    PubMed  CAS  Google Scholar 

  101. Bian JT, Bhargava HN. Effects of morphine-3-glucuronide on the antinociceptive activity of peptide and nonpeptide opioid receptor agonists in mice. Peptides 1996; 17(8): 1415–9.

    PubMed  CAS  Google Scholar 

  102. Suzuki N, Kalso E, Rosenberg PH. Intrathecal morphine-3-glucuronide does not antagonize spinal antinociception by morphine or morphine-6-glucuronide in rats. Eur J Pharmacol 1993; 249(2): 247–50.

    PubMed  CAS  Google Scholar 

  103. Hewett K, Dickenson AH, McQuay HJ. Lack of effect of morphine-3-glucuronide on the spinal antinociceptive actions of morphine in the rat. an electrophysiological study. Pain 1993; 53(1): 59–63.

    PubMed  CAS  Google Scholar 

  104. Hanna MH, Peat SJ, Woodham M, et al. Analgesic efficacy and CSF pharmacokinetics of intrathecal morphine-6-glucuronide. comparison with morphine. Br J Anaesth 1990; 64(5): 547–50.

    PubMed  CAS  Google Scholar 

  105. Boerner U. The metabolism of morphine and heroin in man. Drug Metab Rev 1975; 4(1): 39–73.

    PubMed  CAS  Google Scholar 

  106. Krzanowska EK, Rossi GC, Pasternak GW, et al. Potency ratios of morphine and morphine-6beta-glucuronide analgesia elicited from the periaqueductal gray, locus coeruleus or rostral ventromedial medulla of rats. Brain Res 1998; 799(2): 329–33.

    PubMed  CAS  Google Scholar 

  107. Paul D, Standifer KM, Inturrisi CE, et al. Pharmacological characterization of morphine-6 beta-glucuronide, a very potent morphine metabolite. J Pharmacol Exp Ther 1989; 251(2): 477–83.

    PubMed  CAS  Google Scholar 

  108. Pasternak GW, Bodnar RJ, Clark JA, et al. Morphine-6-glucuronide, a potent mu agonist. Life Sci 1987; 41(26): 2845–9.

    PubMed  CAS  Google Scholar 

  109. Goucke CR, Hackett LP, Ilett KF. Concentrations of morphine, morphine-6-glucuronide and morphine-3-glucuronide in serum and cerebrospinal fluid following morphine administration to patients with morphine-resistant pain. Pain 1994; 56(2): 145–9.

    PubMed  CAS  Google Scholar 

  110. Hasselstrom J, Svensson JO, Sawe J, et al. Disposition and analgesic effects of systemic morphine, morphine-6-glucuronide and normorphine in rat. Pharmacol Toxicol 1996; 79(1): 40–6.

    PubMed  CAS  Google Scholar 

  111. Glare PA, Walsh TD, Pippenger CE. Normorphine, a neurotoxic metabolite?. Lancet 1990; 335(8691): 725–6.

    PubMed  CAS  Google Scholar 

  112. Hanks GW, Hoskin PJ, Aherne GW, et al. Enterohepatic circulation of morphine. Lancet 1988; I(8583): 469.

    Google Scholar 

  113. Tiseo PJ, Thaler HT, Lapin J, et al. Morphine-6-glucuronide concentrations and opioid-related side effects. a survey in cancer patients. Pain 1995; 61(1): 47–54.

    PubMed  CAS  Google Scholar 

  114. Hasselstrom J, Berg U, Lofgren A, et al. Long lasting respiratory depression induced by morphine-6-glucuronide?. Br J Clin Pharmacol 1989; 27(4): 515–8.

    PubMed  CAS  Google Scholar 

  115. Osborne R, Thompson P, Joel S, et al. The analgesic activity of morphine-6-glucuronide. Br J Clin Pharmacol 1992; 34(2): 130–8.

    PubMed  CAS  Google Scholar 

  116. Thompson PI, Joel SP, John L, et al. Respiratory depression following morphine and morphine-6-glucuronide in normal subjects. Br J Clin Pharmacol 1995; 40(2): 145–52.

    PubMed  CAS  Google Scholar 

  117. Lotsch J, Kobal G, Stockmann A, et al. Lack of analgesic activity of morphine-6-glucuronide after short-term intravenous administration in healthy volunteers. Anesthesiology 1997; 87(6): 1348–58.

    PubMed  CAS  Google Scholar 

  118. Bickel U, Schumacher OP, Kang YS, et al. Poor permeability of morphine 3-glucuronide and morphine 6-glucuronide through the blood-brain barrier in the rat. J Pharmacol Exp Ther 1996; 278(1): 107–13.

    PubMed  CAS  Google Scholar 

  119. Carrupt PA, Testa B, Bechalany A, et al. Morphine 6-glucuronide and morphine 3-glucuronide as molecular chameleons with unexpected lipophilicity. J Med Chem 1991; 34(4): 1272–5.

    PubMed  CAS  Google Scholar 

  120. Hanks GW, Hoskin PJ, Aherne GW, et al. Explanation for potency of repeated oral doses of morphine?. Lancet 1987; II(8561): 723–5.

    Google Scholar 

  121. Huwyler J, Drewe J, Klusemann C, et al. Evidence for P-glycoprotein-modulated penetration of morphine-6-glucuronide into brain capillary endothelium. Br J Pharmacol 1996; 118(8): 1879–85.

    PubMed  CAS  Google Scholar 

  122. Huwyler J, Drewe J, Gutmann H, et al. Modulation of morphine-6-glucuronide penetration into the brain by P-glycoprotein. Int J Clin Pharmacol Ther 1998; 36(2): 69–70.

    PubMed  CAS  Google Scholar 

  123. Letrent SP, Pollack GM, Brouwer KR, et al. Effect of GF120918, a potent P-glycoprotein inhibitor, on morphine pharmacokinetics and pharmacodynamics in the rat. Pharm Res 1998; 15(4): 599–605.

    PubMed  CAS  Google Scholar 

  124. Patwardhan RV, Johnson RF, Hoyumpa Jr A, et al. Normal metabolism of morphine in cirrhosis. Gastroenterology 1981; 81(6): 1006–11.

    PubMed  CAS  Google Scholar 

  125. Hasselstrom J, Eriksson S, Persson A, et al. The metabolism and bioavailability of morphine in patients with severe liver cirrhosis. Br J Clin Pharmacol 1990; 29(3): 289–97.

    PubMed  CAS  Google Scholar 

  126. Watson KJR, Ghabrial H, Breen KJ, et al. Morphine disposition in cirrhosis [abstract]. Gastroenterology 1986; 88: 1704.

    Google Scholar 

  127. Meech R, Mackenzie PI. Structure and function of uridine diphosphate glucuronosyltransferases. Clin Exp Pharmacol Physiol 1997; 24(12): 907–15.

    PubMed  CAS  Google Scholar 

  128. Zakim D. The role of membrane lipids in the regulation of membrane-bound enzymes. Prog Liver Dis 1986; 8: 65–80.

    PubMed  CAS  Google Scholar 

  129. Desmond PV, Smyth FE, Mashford ML. Release of latent glucuronosyltransferase activity contributes to the sparing of glucuronidation in experimental liver injuries. J Gastroenterol Hepatol 1994; 9(4): 350–4.

    PubMed  CAS  Google Scholar 

  130. Debinski HS, Mackenzie PI, Lee CS, et al. UDP glucuronosyltransferase in the cirrhotic rat liver. J Gastroenterol Hepatol 1996; 11(4): 373–9.

    PubMed  CAS  Google Scholar 

  131. Aitio A. Effect of chrysene and carbon tetrachloride administration on rat hepatic microsomal monooxygenase and UDPglucuronosyltransferase activity. FEBS Lett 1974; 42(1):46–9.

    PubMed  CAS  Google Scholar 

  132. Boyer TD, Zakim D. The effect of choline deficiency on the activity of a phosphatidylcholine-requiring enzyme activity and properties of UDP-glucuronyltransferase in choline-deficient rats. Biochem Biophys Res Commun 1983; 114(1): 418–24.

    PubMed  CAS  Google Scholar 

  133. Otani G, Abou-El-Makarem MM, Bock KW. UDP-glucuronyltransferase in perfused rat liver and in microsomes: III. Effects of galactosamine and carbon tetrachloride on the glucuronidation of 1-naphthol and bilirubin. Biochem Pharmacol 1976; 25(11): 1293–7.

    PubMed  CAS  Google Scholar 

  134. Pacifici GM, Bencini C, Rane A. Presystemic glucuronidation of morphine in humans and rhesus monkeys. subcellular distribution of the UDP-glucuronyltransferase in the liver and intestine. Xenobiotica 1986; 16(2): 123–8.

    PubMed  CAS  Google Scholar 

  135. Dechelotte P, Sabouraud A, Sandouk P, et al. Uptake, 3-, and 6-glucuronidation of morphine in isolated cells from stomach, intestine, colon, and liver of the guinea pig. Drug Metab Dispos 1993; 21(1): 13–7.

    PubMed  CAS  Google Scholar 

  136. Pacifici GM, Rane A. Renal glucuronidation of morphine in the human foetus. Acta Pharmacol Toxicol 1982; 50(2): 155–60.

    CAS  Google Scholar 

  137. Vree TB, Hekster YA, Anderson PG. Contribution of the human kidney to the metabolic clearance of drugs. Ann Pharmacother 1992; 26(11): 1421–8.

    PubMed  CAS  Google Scholar 

  138. Wahlstrom A, Lenhammar L, Ask B, et al. Tricyclic antidepressants inhibit opioid receptor binding in human brain and hepatic morphine glucuronidation. Pharmacol Toxicol 1994; 75(1): 23–7.

    PubMed  CAS  Google Scholar 

  139. Olsen GD, Bennett WM, Porter GA. Morphine and phenytoin binding to plasma proteins in renal and hepatic failure. Clin Pharmacol Ther 1975; 17(6): 677–84.

    PubMed  CAS  Google Scholar 

  140. Shimoyama N, Shimoyama M, Elliott KJ, et al. D-Methadone is antinociceptive in the rat formalin test. J Pharmacol Exp Ther 1997; 283(2): 648–52.

    PubMed  CAS  Google Scholar 

  141. Verebely K, Volavka J, Mule S, et al. Methadone in man. pharmacokinetic and excretion studies in acute and chronic treatment. Clin Pharmacol Ther 1975; 18(2): 180–90.

    PubMed  CAS  Google Scholar 

  142. Anggard E, Nilsson MI, Holmstrand J, et al. Pharmacokinetics of methadone during maintenance therapy. pulse labeling with deuterated methadone in the steady state. Eur J Clin Pharmacol 1979; 16(1): 53–7.

    PubMed  CAS  Google Scholar 

  143. Kreek MJ, Hachey DL, Klein PD. Stereoselective disposition of methadone in man. Life Sci 1979; 24(10): 925–32.

    PubMed  CAS  Google Scholar 

  144. Kreek MJ, Kalisman M, Irwin M, et al. Biliary secretion of methadone and methadone metabolites in man. Res Commun Chem Pathol Pharmacol 1980; 29(1): 67–78.

    PubMed  CAS  Google Scholar 

  145. Anggard E, Gunne LM, Homstrand J, et al. Disposition of methadone in methadone maintenance. Clin Pharmacol Ther 1975; 17(3): 258–66.

    PubMed  CAS  Google Scholar 

  146. Nilsson MI, Anggard E, Holmstrand J, et al. Pharmacokinetics of methadone during maintenance treatment. adaptive changes during the induction phase. Eur J Clin Pharmacol 1982; 22(4): 343–9.

    PubMed  CAS  Google Scholar 

  147. Kreek MJ, Bencsath FA, Field FH. Effects of liver disease on urinary excretion of methadone and metabolites in maintenance patients. Quantitation by direct probe chemical ionization mass spectrometry. Biomed Mass Spectrom 1980; 7(9): 385–95.

    PubMed  CAS  Google Scholar 

  148. Kreek MJ, Bencsath FA, Fanizza A, et al. Effects of liver disease on fecal excretion of methadone and its unconjugated metabolites in maintenance patients: quantitation by direct probe chemical ionization mass spectrometry. Biomed Mass Spectrom 1983; 10(10): 544–9.

    PubMed  CAS  Google Scholar 

  149. Novick DM, Kreek MJ, Fanizza AM, et al. Methadone disposition in patients with chronic liver disease. Clin Pharmacol Ther 1981; 30(3): 353–62.

    PubMed  CAS  Google Scholar 

  150. Novick DM, Kreek MJ, Arns PA, et al. Effect of severe alcoholic liver disease on the disposition of methadone in maintenance patients. Alcohol Clin Exp Res 1985; 9(4): 349–54.

    PubMed  CAS  Google Scholar 

  151. Orrego H, Israel Y, Blendis LM. Alcoholic liver disease: information in search of knowledge?. Hepatology 1981; 1(3): 267–83.

    PubMed  CAS  Google Scholar 

  152. Borowsky SA, Lieber CS. Interaction of methadone and ethanol metabolism. J Pharmacol Exp Ther 1978; 207(1): 123–9.

    PubMed  CAS  Google Scholar 

  153. Donnelly B, Balkon J, Lasher C, et al. Evaluation of the methadone-alcohol interaction: I. Alterations of plasma concentration kinetics. J Anal Toxicol 1983; 7(5): 246–8.

    PubMed  CAS  Google Scholar 

  154. Iribarne C, Berthou F, Baird S, et al. Involvement of cytochrome P450 3A4 enzyme in the N-demethylation of methadone in human liver microsomes. Chem Res Toxicol 1996; 9(2): 365–73.

    PubMed  CAS  Google Scholar 

  155. George J, Liddle C, Murray M, et al. Pretranslational regulation of cytochrome P450 genes is responsible for disease-specific changes of individual P450 enzymes among patients with cirrhosis. Biochem Pharmacol 1995; 49(7): 873–81.

    PubMed  CAS  Google Scholar 

  156. Mather LE, Tucker GT. Systemic availability of orally administered meperidine. Clin Pharmacol Ther 1976; 20(5): 535–40.

    PubMed  CAS  Google Scholar 

  157. Julius HC, Levine HL, Williams WD. Meperidine binding to isolated alpha 1-acid glycoprotein and albumin. Drug Intell Clin Pharm 1989; 23(7–8): 568–72.

    CAS  Google Scholar 

  158. Callaghan R, Desmond PV, Pauli P, et al. Hepatic enzyme activity is the major factor determining elimination rate of high-clearance drugs in cirrhosis. Hepatology 1993; 18(1): 54–60.

    PubMed  CAS  Google Scholar 

  159. Pond SM, Tong T, Benowitz NL, et al. Presystemic metabolism of meperidine to normeperidine in normal and cirrhotic subjects. Clin Pharmacol Ther 1981; 30(2): 183–8.

    PubMed  CAS  Google Scholar 

  160. Klotz U, McHorse TS, Wilkinson GR, et al. The effect of cirrhosis on the disposition and elimination of meperidine in man. Clin Pharmacol Ther 1974; 16(4): 667–75.

    PubMed  CAS  Google Scholar 

  161. McHorse TS, Klotz U, Wilkinson G, et al. Impaired elimination of meperidine in patients with liver disease. Trans Assoc Am Physicians 1974; 87: 281–7.

    PubMed  CAS  Google Scholar 

  162. Danziger LH, Martin SJ, Blum RA. Central nervous system toxicity associated with meperidine use in hepatic disease. Pharmacotherapy 1994; 14(2): 235–8.

    PubMed  CAS  Google Scholar 

  163. Giacomini KM, Gibson TP, Levy G. Plasma protein binding of d-propoxyphene in normal subjects and anephric patients. J Clin Pharmacol 1978; 18(2–3): 106–9.

    PubMed  CAS  Google Scholar 

  164. Jusko WJ, Gretch M. Plasma and tissue protein binding of drugs in pharmacokinetics. Drug Metab Rev 1976; 5(1): 43–140.

    CAS  Google Scholar 

  165. Lund-Jacobsen H. Cardio-respiratory toxicity of propoxyphene and norpropoxyphene in conscious rabbits. Acta Pharmacol Toxicol 1978; 42(3): 171–8.

    CAS  Google Scholar 

  166. Crome P, Gain R, Ghurye R, et al. Pharmacokinetics of dextropropoxyphene and nordextropropoxyphene in elderly hospital patients after single and multiple doses of distalgesic. Preliminary analysis of results. Hum Toxicol 1984; 3: 41S–48S.

    PubMed  Google Scholar 

  167. Stork CM, Redd JT, Fine K, et al. Propoxyphene-induced wide QRS complex dysrhythmia responsive to sodium bicarbonate: a case report. J Toxicol Clin Toxicol 1995; 33(2): 179–83.

    PubMed  CAS  Google Scholar 

  168. Whitcomb DC, Gilliam FRD, Starmer CF, et al. Marked QRS complex abnormalities and sodium channel blockade by propoxyphene reversed with lidocaine. J Clin Invest 1989; 84(5): 1629–36.

    PubMed  CAS  Google Scholar 

  169. Chan TY. Propoxyphene overdose in Chinese subjects. J Toxicol Clin Toxicol 1996; 34(2): 251–2.

    PubMed  CAS  Google Scholar 

  170. Giacomini KM, Giacomini JC, Gibson TP, et al. Propoxyphene and norpropoxyphene plasma concentrations after oral propoxyphene in cirrhotic patients with and without surgically constructed portacaval shunt. Clin Pharmacol Ther 1980; 28(3): 417–24.

    PubMed  CAS  Google Scholar 

  171. Horsmans Y, Desager JP, Daenens C, et al. D-propoxyphene and norpropoxyphene kinetics after the oral administration of D-propoxyphene. a new approach to liver function?. J Hepatol 1994; 21(3): 283–91.

    PubMed  CAS  Google Scholar 

  172. Rosenberg WM, Ryley NG, Trowell JM, et al. Dextropropoxyphene induced hepatotoxicity: a report of nine cases. J Hepatol 1993; 19(3): 470–4.

    PubMed  CAS  Google Scholar 

  173. Bassendine MF, Woodhouse KW, Bennett M, et al. Dextropropoxyphene induced hepatotoxicity mimicking biliary tract disease. Gut 1986; 27(4): 444–9.

    PubMed  CAS  Google Scholar 

  174. Lee TH, Rees PJ. Hepatotoxicity of dextropropoxyphene. BMJ 1977; 2(6082): 296–7.

    PubMed  CAS  Google Scholar 

  175. Desruelles F, Chichmanian RM, Castanet J, et al. Hepatotoxicity caused by dextropropoxyphene: two cases, one of them with recurrence [letter; in French]. Therapie 1994; 49(6): 521–2.

    PubMed  CAS  Google Scholar 

  176. Chen ZR, Somogyi AA, Reynolds G, et al. Disposition and metabolism of codeine after single and chronic doses in one poor and seven extensive metabolisers. Br J Clin Pharmacol 1991; 31(4): 381–90.

    PubMed  CAS  Google Scholar 

  177. Yue QY, Svensson JO, Alm C, et al. Interindividual and interethnic differences in the demethylation and glucuronidation of codeine. Br J Clin Pharmacol 1989; 28(6): 629–37.

    PubMed  CAS  Google Scholar 

  178. Hennies HH, Friderichs E, Schneider J. Receptor binding, analgesic and antitussive potency of tramadol and other selected opioids. Arzneimittel Forschung 1988; 38(7): 877–80.

    PubMed  CAS  Google Scholar 

  179. Cleary J, Mikus G, Somogyi A, et al. The influence of pharmacogenetics on opioid analgesia: studies with codeine and oxycodone in the Sprague-Dawley/Dark Agouti rat model. J Pharmacol Exp Ther 1994; 271(3): 1528–34.

    PubMed  CAS  Google Scholar 

  180. Eckhardt K, Li S, Ammon S, et al. Same incidence of adverse drug events after codeine administration irrespective of the genetically determined differences in morphine formation. Pain 1998; 76(1–2): 27–33.

    PubMed  CAS  Google Scholar 

  181. Sindrup SH, Brosen K, Bjerring P, et al. Codeine increases pain thresholds to copper vapor laser stimuli in extensive but not poor metabolizers of sparteine. Clin Pharmacol Ther 1990; 48(6): 686–93.

    PubMed  CAS  Google Scholar 

  182. Desmeules J, Gascon MP, Dayer P, et al. Impact of environmental and genetic factors on codeine analgesia. Eur J Clin Pharmacol 1991; 41(1): 23–6.

    PubMed  CAS  Google Scholar 

  183. Chen ZR, Irvine RJ, Bochner F, et al. Morphine formation from codeine in rat brain: a possible mechanism of codeine analgesia. Life Sci 1990; 46(15): 1067–74.

    PubMed  CAS  Google Scholar 

  184. Kamei J. Role of opioidergic and serotonergic mechanisms in cough and antitussives. Pulm Pharmacol 1996; 9(5–6): 349–56.

    PubMed  CAS  Google Scholar 

  185. Rogers JF, Findlay JW, Hull JH, et al. Codeine disposition in smokers and nonsmokers. Clin Pharmacol Ther 1982; 32(2): 218–27.

    PubMed  CAS  Google Scholar 

  186. Yue QY, Sawe J. Different effects of inhibitors on the O- and N-demethylation of codeine in human liver microsomes. Eur J Clin Pharmacol 1997; 52(1): 41–7.

    PubMed  CAS  Google Scholar 

  187. Persson K, Sjostrom S, Sigurdardottir I, et al. Patient-controlled analgesia (PCA) with codeine for postoperative pain relief in ten extensive metabolisers and one poor metaboliser of dextromethorphan. Br J Clin Pharmacol 1995; 39(2): 182–6.

    PubMed  CAS  Google Scholar 

  188. Poulsen L, Brosen K, Arendt-Nielsen L, et al. Codeine and morphine in extensive and poor metabolizers of sparteine: pharmacokinetics, analgesic effect and side effects. Eur J Clin Pharmacol 1996; 51(3–4): 289–95.

    PubMed  CAS  Google Scholar 

  189. George J, Murray M, Byth K, et al. Differential alterations of cytochrome P450 proteins in livers from patients with severe chronic liver disease. Hepatology 1995; 21(1): 120–8.

    PubMed  CAS  Google Scholar 

  190. Adedoyin A, Arns PA, Richards WO, et al. Selective effect of liver disease on the activities of specific metabolizing enzymes: investigation of cytochromes P450 2C19 and 2D6. Clin Pharmacol Ther 1998; 64(1): 8–17.

    PubMed  CAS  Google Scholar 

  191. Fromm MF, Hofmann U, Griese EU, et al. Dihydrocodeine: a new opioid substrate for the polymorphic CYP2D6 in humans. Clin Pharmacol Ther 1995; 58(4): 374–82.

    PubMed  CAS  Google Scholar 

  192. Wilder-Smith CH, Hufschmid E, Thormann W. The visceral and somatic antinociceptive effects of dihydrocodeine and its metabolite, dihydromorphine: a cross-over study with extensive and quinidine-induced poor metabolizers. Br J Clin Pharmacol 1998; 45(6): 575–81.

    PubMed  CAS  Google Scholar 

  193. Jurna I, Komen W, Baldauf J, et al. Analgesia by dihydrocodeine is not due to formation of dihydromorphine: evidence from nociceptive activity in rat thalamus. J Pharmacol Exp Ther 1997; 281(3): 1164–70.

    PubMed  CAS  Google Scholar 

  194. Ohtani M, Kotaki H, Sawada Y, et al. Comparative analysis of buprenorphine- and norbuprenorphine-induced analgesic effects based on pharmacokinetic-pharmacodynamic modeling. J Pharmacol Exp Ther 1995; 272(2): 505–10.

    PubMed  CAS  Google Scholar 

  195. Cone EJ, Gorodetzky CW, Yousefnejad D, et al. The metabolism and excretion of buprenorphine in humans. Drug Metab Dispos 1984; 12(5): 577–81.

    PubMed  CAS  Google Scholar 

  196. Iribarne C, Picart D, Dreano Y, et al. Involvement of cytochrome P450 3 A4 in N-dealkylation of buprenorphine in human liver microsomes. Life Sci 1997; 60(22): 1953–64.

    PubMed  CAS  Google Scholar 

  197. Kobayashi K, Yamamoto T, Chiba K, et al. Human buprenorphine N-dealkylation is catalyzed by cytochrome P450 3A4. Drug Metab Dispos 1998; 26(8): 818–21.

    PubMed  CAS  Google Scholar 

  198. Pittman K. Human metabolism of orally administered pentazocine. Biochem Pharmacol 1970; 19(5): 1833–6.

    PubMed  CAS  Google Scholar 

  199. Vaughan DP, Beckett AH, Robbie DS. The influence of smoking on the intersubject variation in pentazocine elimination. Br J Clin Pharmacol 1976; 3(2): 279–83.

    PubMed  CAS  Google Scholar 

  200. Hoskin PJ, Hanks GW. Opioid agonist-antagonist drugs in acute and chronic pain states. Drugs 1991; 41(3): 326–44.

    PubMed  CAS  Google Scholar 

  201. Pond SM, Tong T, Benowitz NL, et al. Enhanced bioavailability of pethidine and pentazocine in patients with cirrhosis of the liver. Aust NZ JMed 1980; 10(5): 515–9.

    CAS  Google Scholar 

  202. Pentazocine (Talwin®) [product information]. Munich: Sanofi Winthrop, 1995.

  203. Raffa RB, Friderichs E, Reimann W, et al. Complementary and synergistic antinociceptive interaction between the enantiomers of tramadol. J Pharmacol Exp Ther 1993; 267(1): 331–40.

    PubMed  CAS  Google Scholar 

  204. Raffa RB, Friderichs E, Reimann W, et al. Opioid and nonopioid components independently contribute to the mechanism of action of tramadol, an ‘atypical’ opioid analgesic. J Pharmacol Exp Ther 1992; 260(1): 275–85.

    PubMed  CAS  Google Scholar 

  205. Lintz W, Erlacin S, Frankus E, et al. Biotransfonnation of tramadol in man and animal [in German]. Arzneimittel Forschung 1981; 31(11): 1932–43.

    PubMed  CAS  Google Scholar 

  206. Dayer P, Desmeules J, Collart L. Pharmacology of tramadol. Drugs 1997;Suppl. 2: 18–24.

    Google Scholar 

  207. Lee CR, McTavish D, Sorkin EM. Tramadol: a preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in acute and chronic pain states. Drugs 1993; 46(2): 313–40.

    PubMed  CAS  Google Scholar 

  208. Poulsen L, Arendt-Nielsen L, Brosen K, et al. The hypoalgesic effect of tramadol in relation to CYP2D6. Clin Pharmacol Ther 1996; 60(6): 636–44.

    PubMed  CAS  Google Scholar 

  209. Tramadol (Ultram®) [product information]. Raritan (NJ): Ortho-McNeil Pharmaceutical, 1997.

  210. Vollmer KO, Poisson A. On the metabolism of ethyl-DL-trans-2-dimethylamino-1-phenyl-cyclohex-3-ene-trans-1-carbox ylate-hydrochloride (Tilidine-HCl): 2nd communication. Studies with 14C-labelled substance on rats and dogs. Arzneimittel Forschung 1976; 26(10): 1827–36.

    PubMed  CAS  Google Scholar 

  211. Data on file, report no. RR 42380, Gödecke.

  212. Paix A, Coleman A, Lees J, et al. Subcutaneous fentanyl and sufentanil infusion substitution for morphine intolerance in cancer pain management. Pain 1995; 63(2): 263–9.

    PubMed  CAS  Google Scholar 

  213. Hug Jr CC, Murphy MR. Tissue redistribution of fentanyl and termination of its effects in rats. Anesthesiology 1981; 55(4): 369–75.

    PubMed  CAS  Google Scholar 

  214. Singleton MA, Rosen JI, Fisher DM. Pharmacokinetics of fentanyl in the elderly. Br J Anaesth 1988; 60(6): 619–22.

    PubMed  CAS  Google Scholar 

  215. Santeiro ML, Christie J, Stromquist C, et al. Pharmacokinetics of continuous infusion fentanyl in newborns. J Perinatol 1997; 17(2): 135–9.

    PubMed  CAS  Google Scholar 

  216. Katz R, Kelly HW. Pharmacokinetics of continuous infusions of fentanyl in critically ill children. Crit Care Med 1993; 21(7): 995–1000.

    PubMed  CAS  Google Scholar 

  217. Hoffmann P. Continuous infusions of fentanyl and alfentanil in intensive care [abstract]. Eur J Anaesthesiol Suppl. 1987; 1: 71–5.

    PubMed  CAS  Google Scholar 

  218. Wiesner G, Taeger K, Peter K. Serum protein binding of fentanyl. The effect of postoperative acute phase reaction with elevated alpha 1-acid glycoprotein and methodologic problems in determination by equilibrium dialysis. Anaesthesist 1996; 45(4): 323–9.

    PubMed  CAS  Google Scholar 

  219. Goromaru T, Matsuura H, Yoshimura N, et al. Identification and quantitative determination of fentanyl metabolites in patients by gas chromatography: mass spectrometry. Anesthesiology 1984; 61(1):73–7.

    PubMed  CAS  Google Scholar 

  220. Murphy MR, Hug Jr CC, McClain DA. Dose-independent pharmacokinetics of fentanyl. Anesthesiology 1983; 59(6): 537–40.

    PubMed  CAS  Google Scholar 

  221. Miller RS, Peterson GM, Abbott F, et al. Plasma concentrations of fentanyl with subcutaneous infusion in palliative care patients. Br J Clin Pharmacol 1995; 40(6): 553–6.

    PubMed  CAS  Google Scholar 

  222. Reilly CS, Wood AJ, Wood M. Variability of fentanyl pharmacokinetics in man: computer predicted plasma concentrations for three intravenous dosage regimens. Anaesthesia 1985; 40(9): 837–43.

    PubMed  CAS  Google Scholar 

  223. Bovill JG, Sebel PS. Pharmacokinetics of high-dose fentanyl: a study in patients undergoing cardiac surgery. Br J Anaesth 1980; 52(8): 795–801.

    PubMed  CAS  Google Scholar 

  224. Koska AJd, Romagnoli A, Kramer WG. Effect of cardiopulmonary bypass on fentanyl distribution and elimination. Clin Pharmacol Ther 1981; 29(1): 100–5.

    PubMed  Google Scholar 

  225. Shafer SL, Varvel JR. Pharmacokinetics, pharmacodynamics, and rational opioid selection. Anesthesiology 1991; 74(1): 53–63.

    PubMed  CAS  Google Scholar 

  226. Hughes MA, Glass PS, Jacobs JR. Context-sensitive half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology 1992; 76(3): 334–41.

    PubMed  CAS  Google Scholar 

  227. Grant RP, Jenkins LC. Modification by preoperative beta-blockade of the renin response to infrarenal aortic cross-clamping. Can Anaesth Soc J 1983; 30(5): 480–6.

    PubMed  CAS  Google Scholar 

  228. Jackson EK, Garrison JC. Renin and angiotensin. New York: McGraw-Hill, 1996.

    Google Scholar 

  229. Roily G, Kay B, Cockx F. A double blind comparison of high doses fentanyl and sufentanil in men: influence on cardiovascular, respiratory and metabolic parameters. Acta Anaesthesiol Belg 1979; 30(4): 247–54.

    Google Scholar 

  230. Schwartz AE, Matteo RS, Ornstein E, et al. Pharmacokinetics of sufentanil in obese patients. Anesth Analg 1991; 73(6): 790–3.

    PubMed  CAS  Google Scholar 

  231. Meistelman C, Benhamou D, Barre J, et al. Effects of age on plasma protein binding of sufentanil. Anesthesiology 1990; 72(3): 470–3.

    PubMed  CAS  Google Scholar 

  232. Greeley WJ, de Bruijn NP, Davis DP. Sufentanil pharmacokinetics in pediatric cardiovascular patients. Anesth Analg 1987; 66(11): 1067–72.

    PubMed  CAS  Google Scholar 

  233. Rosow CE. Sufentanil citrate: a new opioid analgesic for use in anesthesia. Pharmacotherapy 1984; 4(1): 11–9.

    PubMed  CAS  Google Scholar 

  234. Howie MB, Smith DF, Reilley TE, et al. Postoperative course after sufentanil or fentanyl anesthesia for coronary artery surgery. J Cardiothorac Vasc Anesth 1991; 5(5): 485–9.

    PubMed  CAS  Google Scholar 

  235. Scholz J, Bause H, Schulz M, et al. Pharmacokinetics and effects on intracranial pressure of sufentanil in head trauma patients. Br J Clin Pharmacol 1994; 38(4): 369–72.

    PubMed  CAS  Google Scholar 

  236. Schwartz AE, Matteo RS, Ornstein E, et al. Pharmacokinetics of sufentanil in neurosurgical patients undergoing hyperventilation. Br J Anaesth 1989; 63(4): 385–8.

    PubMed  CAS  Google Scholar 

  237. Egan TD, Minto CF, Hermann DJ, et al. Remifentanil versus alfentanil: comparative pharmacokinetics and pharmacodynamics in healthy adult male volunteers. Anesthesiology 1996; 84(4): 821–33.

    PubMed  CAS  Google Scholar 

  238. Scott JC, Cooke JE, Stanski DR. Electroencephalographic quantitation of opioid effect: comparative pharmacodynamics of fentanyl and sufentanil. Anesthesiology 1991; 74(1): 34–42.

    PubMed  CAS  Google Scholar 

  239. Scott JC, Ponganis KV, Stanski DR. EEG quantitation of narcotic effect: the comparative pharmacodynamics of fentanyl and alfentanil. Anesthesiology 1985; 62(3): 234–41.

    PubMed  CAS  Google Scholar 

  240. Bower S, Sear JW, Roy RC, et al. Effects of different hepatic pathologies on disposition of alfentanil in anaesthetized patients. Br J Anaesth 1992; 68(5): 462–5.

    PubMed  CAS  Google Scholar 

  241. Ferrier C, Marty J, Bouffard Y, et al. Alfentanil pharmacokinetics in patients with cirrhosis. Anesthesiology 1985; 62(4): 480–4.

    PubMed  CAS  Google Scholar 

  242. Bower S, Hull CJ. Comparative pharmacokinetics of fentanyl and alfentanil. Br J Anaesth 1982; 54(8): 871–7.

    PubMed  CAS  Google Scholar 

  243. Meuldermans W, Van Peer A, Hendrickx J, et al. Alfentanil pharmacokinetics and metabolism in humans. Anesthesiology 1988; 69(4): 527–34.

    PubMed  CAS  Google Scholar 

  244. Meuldermans W, Woestenborghs R, Noorduin H, et al. Protein binding of the analgesics alfentanil and sufentanil in maternal and neonatal plasma. Eur J Clin Pharmacol 1986; 30(2): 217–9.

    PubMed  CAS  Google Scholar 

  245. Schüttler J, Stoeckel H. Clinical pharmacokinetics of alfentanyl. Anaesthesist 1982; 31(1): 10–4.

    PubMed  Google Scholar 

  246. Kharasch ED, Russell M, Mautz D, et al. The role of cytochrome P450 3A4 in alfentanil clearance: implications for interindividual variability in disposition and perioperative drug interactions. Anesthesiology 1997; 87(1): 36–50.

    PubMed  CAS  Google Scholar 

  247. Chauvin M, Bonnet F, Montembault C, et al. The influence of hepatic plasma flow on alfentanil plasma concentration plateaus achieved with an infusion model in humans: measurement of alfentanil hepatic extraction coefficient. Anesth Analg 1986; 65(10): 999–1003.

    PubMed  CAS  Google Scholar 

  248. Camu F, Gepts E, Rucquoi M, et al. Pharmacokinetics of alfentanil in man. Anesth Analg 1982; 61(8): 657–61.

    PubMed  CAS  Google Scholar 

  249. Bodenham A, Park GR. Alfentanil infusions in patients requiring intensive care. Clin Pharmacokinet 1988; 15(4): 216–26.

    PubMed  CAS  Google Scholar 

  250. Yate PM, Thomas D, Short SM, et al. Comparison of infusions of alfentanil or pethidine for sedation of ventilated patients on the ITU. Br J Anaesth 1986; 58(10): 1091–9.

    PubMed  CAS  Google Scholar 

  251. Sinclair ME, Sear JW, Summerfield RJ, et al. Alfentanil infusions on the intensive therapy unit. Intensive Care Med 1988; 14(1): 55–9.

    PubMed  CAS  Google Scholar 

  252. James MK, Feldman PL, Schuster SV, et al. Opioid receptor activity of GI 87084B, a novel ultra-short acting analgesic, in isolated tissues. J Pharmacol Exp Ther 1991; 259(2): 712–8.

    PubMed  CAS  Google Scholar 

  253. Jhaveri R, Joshi P, Batenhorst R, et al. Dose comparison of remifentanil and alfentanil for loss of consciousness. Anesthesiology 1997; 87(2): 253–9.

    PubMed  CAS  Google Scholar 

  254. Hoke JF, Cunningham F, James MK, et al. Comparative pharmacokinetics and pharmacodynamics of remifentanil, its principle metabolite (GR90291) and alfentanil in dogs. J Pharmacol Exp Ther 1997; 281(1): 226–32.

    PubMed  CAS  Google Scholar 

  255. Hoke JF, Shlugman D, Dershwitz M, et al. Pharmacokinetics and pharmacodynamics of remifentanil in persons with renal failure compared with healthy volunteers. Anesthesiology 1997; 87(3): 533–41.

    PubMed  CAS  Google Scholar 

  256. Kapila A, Glass PS, Jacobs JR, et al. Measured context-sensitive half-times of remifentanil and alfentanil. Anesthesiology 1995; 83(5): 968–75.

    PubMed  CAS  Google Scholar 

  257. Dershwitz M, Hoke JF, Rosow CE, et al. Pharmacokinetics and pharmacodynamics of remifentanil in volunteer subjects with severe liver disease. Anesthesiology 1996; 84(4): 812–20.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Geisslinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tegeder, I., Lötsch, J. & Geisslinger, G. Pharmacokinetics of Opioids in Liver Disease. Clin Pharmacokinet 37, 17–40 (1999). https://doi.org/10.2165/00003088-199937010-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199937010-00002

Keywords

Navigation