Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies

Abstract

Globally, colorectal cancer (CRC) is the third most commonly diagnosed malignancy and the second leading cause of cancer death. Arising through three major pathways, including adenoma–carcinoma sequence, serrated pathway and inflammatory pathway, CRC represents an aetiologically heterogeneous disease according to subtyping by tumour anatomical location or global molecular alterations. Genetic factors such as germline MLH1 and APC mutations have an aetiologic role, predisposing individuals to CRC. Yet, the majority of CRC is sporadic and largely attributable to the constellation of modifiable environmental risk factors characterizing westernization (for example, obesity, physical inactivity, poor diets, alcohol drinking and smoking). As such, the burden of CRC is shifting towards low-income and middle-income countries as they become westernized. Furthermore, the rising incidence of CRC at younger ages (before age 50 years) is an emerging trend. This Review provides a comprehensive summary of CRC epidemiology, with emphasis on modifiable lifestyle and nutritional factors, chemoprevention and screening. Overall, the optimal reduction of CRC incidence and mortality will require concerted efforts to reduce modifiable risk factors, to leverage chemoprevention research and to promote population-wide and targeted screening.

Key points

  • Certain global genetic and epigenetic aberrations are disproportionally distributed across the colorectum, which corresponds to aetiological heterogeneity of colorectal cancer (CRC), especially hypermutated cancers, by anatomical location

  • With increasing incidence of CRC at younger ages, there is an urgent need to better identify high-risk individuals younger than 50 years, the age when screening typically starts

  • The constellation of factors associated with westernization, such as obesity, physical inactivity, poor diets, alcohol drinking and smoking, is likely to drive increasing CRC incidence in economically transitioning countries

  • Evidence indicates that aspirin probably confers chemopreventive benefit against CRC, though recommendation for its widespread prophylactic use is currently premature

  • Screening colonoscopy and faecal occult blood test, when implemented appropriately per national financial and medical resources and CRC incidence, could contribute to secondary prevention of CRC

  • The optimal reduction of CRC incidence and mortality will require concerted efforts to reduce modifiable risk factors, to leverage chemoprevention research and to promote population-wide and targeted screening

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proportion of colorectal cancer cases associated with sporadic and hereditary factors.
Fig. 2: Descriptive epidemiology of colorectal cancer.
Fig. 3: Time trends of colorectal cancer incidence rates.
Fig. 4: Incidence and mortality of colorectal cancer by age and sex worldwide.
Fig. 5: Pathways of colorectal carcinogenesis.
Fig. 6: Anatomical subtypes of colorectal cancer and their associations with tumour molecular features and other factors.
Fig. 7: Time trends of early-onset and late-onset colorectal cancer incidence rates.
Fig. 8: Introduction of colorectal cancer screening programmes and time trend of colorectal cancer incidence rates and mortality rates.

Similar content being viewed by others

References

  1. Fleming, M., Ravula, S., Tatishchev, S. F. & Wang, H. L. Colorectal carcinoma: pathologic aspects. J. Gastrointest. Oncol. 3, 153–173 (2012).

    PubMed  PubMed Central  Google Scholar 

  2. Jasperson, K. W., Tuohy, T. M., Neklason, D. W. & Burt, R. W. Hereditary and familial colon cancer. Gastroenterology 138, 2044–2058 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Graff, R. E. et al. Familial risk and heritability of colorectal cancer in the nordic twin study of cancer. Clin. Gastroenterol. Hepatol. 15, 1256–1264 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lichtenstein, P. et al. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J Med. 343, 78–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Jiao, S. et al. Estimating the heritability of colorectal cancer. Hum. Mol. Genet. 23, 3898–3905 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. International Agency for Research on Cancer. Globocan 2018: Cancer Fact Sheets — Colorectal Cancer. IARC http://gco.iarc.fr/today/data/factsheets/cancers/10_8_9-Colorectum-fact-sheet.pdf (2018).

  7. Brenner, H., Stock, C. & Hoffmeister, M. Effect of screening sigmoidoscopy and screening colonoscopy on colorectal cancer incidence and mortality: systematic review and meta-analysis of randomised controlled trials and observational studies. BMJ 348, g2467 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schreuders, E. H. et al. Colorectal cancer screening: a global overview of existing programmes. Gut 64, 1637–1649 (2015).

    Article  PubMed  Google Scholar 

  9. World Cancer Research Fund International/American Institute for Cancer Research. Continuous update project report: Diet, nutrition, physical activity, and colorectal cancer. American Institute for Cancer Research https://www.aicr.org/continuous-update-project/reports/colorectal-cancer-2017-report.pdf (2018).

  10. Center, M. M., Jemal, A. & Ward, E. International trends in colorectal cancer incidence rates. Cancer Epidemiol. Biomarkers Prev. 18, 1688–1694 (2009).

    Article  PubMed  Google Scholar 

  11. United Nations Development Programme. 2018 Statistical Update and Human Development Index. United Nations Development Programme http://hdr.undp.org/ (2018).

  12. Arnold, M. et al. Global patterns and trends in colorectal cancer incidence and mortality. Gut 66, 683–691 (2017).

    Article  PubMed  Google Scholar 

  13. Imamura, F. et al. Dietary quality among men and women in 187 countries in 1990 and 2010: a systematic assessment. Lancet Glob. Health 3, e132–e142 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. World Health Organization. Mean Body Mass Index Trends Among Adults, Age-Standardized Estimates by Country. World Health Organization http://apps.who.int/gho/data/node.main.A904?lang=en (2017).

  15. Mousavi, S. M., Fallah, M., Sundquist, K. & Hemminki, K. Age- and time-dependent changes in cancer incidence among immigrants to Sweden: colorectal, lung, breast and prostate cancers. Int. J. Cancer 131, E122–E128 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Karastergiou, K., Smith, S. R., Greenberg, A. S. & Fried, S. K. Sex differences in human adipose tissues – the biology of pear shape. Biol. Sex Differ. 3, 13 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wilsnack, R. W., Wilsnack, S. C., Kristjanson, A. F., Vogeltanz-Holm, N. D. & Gmel, G. Gender and alcohol consumption: patterns from the multinational GENACIS project. Addiction 104, 1487–1500 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. World Health Organization. WHO Global Report on Trends in Prevalence of Tobacco Smoking. 2015. World Health Organization http://apps.who.int/iris/bitstream/handle/10665/156262/9789241564922_eng.pdf;jsessionid=3E603A72D553D128773D0836AECE325E?sequence=1 (2015).

  19. Clarke, N., Sharp, L., Osborne, A. & Kearney, P. M. Comparison of uptake of colorectal cancer screening based on fecal immunochemical testing (FIT) in males and females: a systematic review and meta-analysis. Cancer Epidemiol. Biomarkers Prev. 24, 39–47 (2015).

    Article  PubMed  Google Scholar 

  20. Murphy, N. et al. A prospective evaluation of endogenous sex hormone levels and colorectal cancer risk in postmenopausal women. J. Natl Cancer. Inst. 107, djv210 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. U.S. Cancer Statistics Working Group. U.S. Cancer Statistics Data Visualizations Tool, based on November 2017 submission data (1999-2015): U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Centers for Disease Control and Prevention www.cdc.gov/cancer/dataviz (2016).

  22. Augustus, G. J. & Ellis, N. A. Colorectal cancer disparity in african americans: risk factors and carcinogenic mechanisms. Am. J. Pathol. 188, 291–303 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ashktorab, H. et al. Identification of novel mutations by exome sequencing in African American colorectal cancer patients. Cancer 121, 34–42 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, H. et al. Novel colon cancer susceptibility variants identified from a genome-wide association study in African Americans. Int. J. Cancer 140, 2728–2733 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huyghe, J. R. et al. Discovery of common and rare genetic risk variants for colorectal cancer. Nat. Genet. 51, 76–87 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Ashktorab, H. et al. A meta-analysis of MSI frequency and race in colorectal cancer. Oncotarget 7, 34546–34557 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pawlik, T. M., Raut, C. P. & Rodriguez-Bigas, M. A. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers 20, 199–206 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Guindalini, R. S. et al. Mutation spectrum and risk of colorectal cancer in African American families with Lynch syndrome. Gastroenterology 149, 1446–1453 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Pitot, H. C. The molecular biology of carcinogenesis. Cancer 72, 962–970 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Carethers, J. M. & Jung, B. H. Genetics and genetic biomarkers in sporadic colorectal cancer. Gastroenterology 149, 1177–1190.e3 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Munro, M. J., Wickremesekera, S. K., Peng, L., Tan, S. T. & Itinteang, T. Cancer stem cells in colorectal cancer: a review. J. Clin. Pathol. 71, 110–116 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Ogino, S. & Goel, A. Molecular classification and correlates in colorectal cancer. J. Mol. Diagn. 10, 13–27 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grady, W. M. & Carethers, J. M. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology 135, 1079–1099 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Bakhoum, S. F. et al. The mitotic origin of chromosomal instability. Curr. Biol. 24, R148–R149 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nazemalhosseini Mojarad, E., Kuppen, P. J., Aghdaei, H. A. & Zali, M. R. The CpG island methylator phenotype (CIMP) in colorectal cancer. Gastroenterol. Hepatol. Bed Bench 6, 120–128 (2013).

    PubMed  Google Scholar 

  36. Markowitz, S. D. & Bertagnolli, M. M. Molecular origins of cancer: molecular basis of colorectal cancer. N. Engl J. Med. 361, 2449–2460 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jia, M., Gao, X., Zhang, Y., Hoffmeister, M. & Brenner, H. Different definitions of CpG island methylator phenotype and outcomes of colorectal cancer: a systematic review. Clin. Epigenetics 8, 25 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Funkhouser, W. K. Jr. et al. Relevance, pathogenesis, and testing algorithm for mismatch repair-defective colorectal carcinomas: a report of the association for molecular pathology. J. Mol. Diagn. 14, 91–103 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Weisenberger, D. J. et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet. 38, 787–793 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Conteduca, V., Sansonno, D., Russi, S. & Dammacco, F. Precancerous colorectal lesions (Review). Int. J. Oncol. 43, 973–984 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Winawer, S. J. et al. Colorectal cancer screening: clinical guidelines and rationale. Gastroenterology 112, 594–642 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Brenner, H. et al. Risk of progression of advanced adenomas to colorectal cancer by age and sex: estimates based on 840,149 screening colonoscopies. Gut 56, 1585–1589 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Strum, W. B. Colorectal adenomas. N. Engl J. Med. 374, 1065–1075 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. East, J. E. et al. British Society of Gastroenterology position statement on serrated polyps in the colon and rectum. Gut 66, 1181–1196 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Erichsen, R. et al. Increased risk of colorectal cancer development among patients with serrated polyps. Gastroenterology 150, 895–902e5 (2016).

    Article  PubMed  Google Scholar 

  46. Dow, L. E. et al. Apc restoration promotes cellular differentiation and reestablishes crypt homeostasis in colorectal cancer. Cell 161, 1539–1552 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Armaghany, T., Wilson, J. D., Chu, Q. & Mills, G. Genetic alterations in colorectal cancer. Gastrointest. Cancer Res. 5, 19–27 (2012).

    PubMed  PubMed Central  Google Scholar 

  48. Pino, M. S. & Chung, D. C. The chromosomal instability pathway in colon cancer. Gastroenterology 138, 2059–2072 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Leggett, B. & Whitehall, V. Role of the serrated pathway in colorectal cancer pathogenesis. Gastroenterology 138, 2088–2100 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Kedrin, D. & Gala, M. K. Genetics of the serrated pathway to colorectal cancer. Clin. Transl Gastroenterol. 6, e84 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. O’Brien, M. J. et al. Comparison of microsatellite instability, CpG island methylation phenotype, BRAF and KRAS status in serrated polyps and traditional adenomas indicates separate pathways to distinct colorectal carcinoma end points. Am. J. Surg. Pathol. 30, 1491–1501 (2006).

    Article  PubMed  Google Scholar 

  52. Kim, K. M. et al. Molecular features of colorectal hyperplastic polyps and sessile serrated adenoma/polyps from Korea. Am. J. Surg. Pathol. 35, 1274–1286 (2011).

    Article  PubMed  Google Scholar 

  53. Yang, S., Farraye, F. A., Mack, C., Posnik, O. & O’Brien, M. J. BRAF and KRAS mutations in hyperplastic polyps and serrated adenomas of the colorectum: relationship to histology and CpG island methylation status. Am. J. Surg. Pathol. 28, 1452–1459 (2004).

    Article  PubMed  Google Scholar 

  54. Jess, T., Rungoe, C. & Peyrin-Biroulet, L. Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Clin. Gastroenterol. Hepatol. 10, 639–645 (2012).

    Article  PubMed  Google Scholar 

  55. Itzkowitz, S. H. & Yio, X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G7–G17 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Buchner, A. M. & Lichtenstein, G. R. Evaluation and detection of dysplasia in IBD: the role of chromoendoscopy and enhanced imaging techniques. Curr. Treat. Options Gastroenterol. 14, 73–82 (2016).

    Article  PubMed  Google Scholar 

  57. Robles, A. I. et al. Whole-exome sequencing analyses of inflammatory bowel disease-associated colorectal cancers. Gastroenterology 150, 931–943 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Triantafillidis, J. K., Nasioulas, G. & Kosmidis, P. A. Colorectal cancer and inflammatory bowel disease: epidemiology, risk factors, mechanisms of carcinogenesis and prevention strategies. Anticancer Res. 29, 2727–2737 (2009).

    PubMed  Google Scholar 

  59. Li, F. Y. & Lai, M. D. Colorectal cancer, one entity or three. J. Zhejiang Univ. Sci. B 10, 219–229 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Murphy, N. et al. Heterogeneity of colorectal cancer risk factors by anatomical subsite in 10 European countries: a multinational cohort study. Clin. Gastroenterol. Hepatol. 17, 1323–1331.e6 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wei, E. K. et al. Comparison of risk factors for colon and rectal cancer. Int. J. Cancer 108, 433–442 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Drewes, J. L., Housseau, F. & Sears, C. L. Sporadic colorectal cancer: microbial contributors to disease prevention, development and therapy. Br. J. Cancer 115, 273–280 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang, L. et al. Proximal shift of colorectal cancer with increasing age in different ethnicities. Cancer Manag. Res. 10, 2663–2673 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Murphy, G. et al. Sex disparities in colorectal cancer incidence by anatomic subsite, race and age. Int. J. Cancer 128, 1668–1675 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Shin, A. et al. Increasing trend of colorectal cancer incidence in Korea, 1999-2009. Cancer Res. Treat. 44, 219–226 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Missiaglia, E. et al. Distal and proximal colon cancers differ in terms of molecular, pathological, and clinical features. Ann. Oncol. 25, 1995–2001 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

    Article  CAS  Google Scholar 

  68. Guastadisegni, C., Colafranceschi, M., Ottini, L. & Dogliotti, E. Microsatellite instability as a marker of prognosis and response to therapy: a meta-analysis of colorectal cancer survival data. Eur. J. Cancer 46, 2788–2798 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Boland, C. R. & Goel, A. Microsatellite instability in colorectal cancer. Gastroenterology 138, 2073–2087.e3 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Westdorp, H. et al. Opportunities for immunotherapy in microsatellite instable colorectal cancer. Cancer Immunol. Immunother. 65, 1249–1259 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Giannakis, M. et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 15, 857–865 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Passardi, A., Canale, M., Valgiusti, M. & Ulivi, P. Immune checkpoints as a target for colorectal cancer treatment. Int. J. Mol. Sci. 18, E1324 (2017).

    Article  PubMed  CAS  Google Scholar 

  74. Jia, M. et al. No association of CpG island methylator phenotype and colorectal cancer survival: population-based study. Br. J. Cancer 115, 1359–1366 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jass, J. R. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology 50, 113–130 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Alwers, E. et al. Associations between molecular classifications of colorectal cancer and patient survival: a systematic review. Clin. Gastroenterol. Hepatol. 17, 402–410.e2 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Butterworth, A. S., Higgins, J. P. & Pharoah, P. Relative and absolute risk of colorectal cancer for individuals with a family history: a meta-analysis. Eur. J. Cancer 42, 216–227 (2006).

    Article  PubMed  Google Scholar 

  79. Weigl, K. et al. Strongly enhanced colorectal cancer risk stratification by combining family history and genetic risk score. Clin. Epidemiol. 10, 143–152 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rahner, N. & Steinke, V. Hereditary cancer syndromes. Dtsch. Arztebl. Int. 105, 706–714 (2008).

    PubMed  PubMed Central  Google Scholar 

  81. Mork, M. E. et al. High prevalence of hereditary cancer syndromes in adolescents and young adults with colorectal cancer. J. Clin. Oncol. 33, 3544–3549 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Goodenberger, M. L. et al. PMS2 monoallelic mutation carriers: the known unknown. Genet. Med. 18, 13–19 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Win, A. K. et al. Prevalence and penetrance of major genes and polygenes for colorectal cancer. Cancer Epidemiol. Biomarkers Prev. 26, 404–412 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Lynch, H. T. & de la Chapelle, A. Hereditary colorectal cancer. N. Engl. J. Med. 348, 919–932 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Lindgren, G., Liljegren, A., Jaramillo, E., Rubio, C. & Lindblom, A. Adenoma prevalence and cancer risk in familial non-polyposis colorectal cancer. Gut 50, 228–234 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jass, J. R. et al. Pathology of hereditary non-polyposis colorectal cancer. Anticancer Res. 14, 1631–1634 (1994).

    CAS  PubMed  Google Scholar 

  87. Half, E., Bercovich, D. & Rozen, P. Familial adenomatous polyposis. Orphanet J. Rare Dis. 4, 22 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Patel, S. G. & Ahnen, D. J. Familial colon cancer syndromes: an update of a rapidly evolving field. Curr. Gastroenterol. Rep. 14, 428–438 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Murphy, C. C. & Singal, A. G. Establishing a research agenda for early-onset colorectal cancer. PLOS Med. 15, e1002577 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Pearlman, R. et al. Prevalence and spectrum of germline cancer susceptibility gene mutations among patients with early-onset colorectal cancer. JAMA Oncol. 3, 464–471 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Crosbie, A. B. et al. Trends in colorectal cancer incidence among younger adults-disparities by age, sex, race, ethnicity, and subsite. Cancer Med. 7, 4077–4086 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ballester, V., Rashtak, S. & Boardman, L. Clinical and molecular features of young-onset colorectal cancer. World J. Gastroenterol. 22, 1736–1744 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kim, T. J., Kim, E. R., Hong, S. N., Chang, D. K. & Kim, Y. H. Long-term outcome and prognostic factors of sporadic colorectal cancer in young patients: a large institutional-based retrospective study. Medicine 95, e3641 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nimptsch, K. & Wu, K. Is timing important? the role of diet and lifestyle during early life on colorectal neoplasia. Curr. Colorectal Cancer Rep. 14, 1–11 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 390, 2627–2642 (2017).

    Article  Google Scholar 

  96. Liu, P. H. et al. Association of obesity with risk of early-onset colorectal cancer among women. JAMA Oncol. 5, 37–44 (2019).

    Article  PubMed  Google Scholar 

  97. Renehan, A. G., Tyson, M., Egger, M., Heller, R. F. & Zwahlen, M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371, 569–578 (2008).

    Article  PubMed  Google Scholar 

  98. Dong, Y. et al. Abdominal obesity and colorectal cancer risk: systematic review and meta-analysis of prospective studies. Biosci. Rep. 37, BSR20170945 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kune, G. A. The Melbourne Colorectal Cancer Study: reflections on a 30-year experience. Med. J. Aust. 193, 648–652 (2010).

    Article  PubMed  Google Scholar 

  100. Mansournia, M. A. & Altman, D. G. Population attributable fraction. BMJ 360, k757 (2018).

    Article  PubMed  Google Scholar 

  101. Liang, P. S., Chen, T. Y. & Giovannucci, E. Cigarette smoking and colorectal cancer incidence and mortality: systematic review and meta-analysis. Int. J. Cancer 124, 2406–2415 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Song, M. et al. Long-term status and change of body fat distribution, and risk of colorectal cancer: a prospective cohort study. Int. J. Epidemiol. 45, 871–883 (2016).

    Article  PubMed  Google Scholar 

  103. Moore, L. L. et al. BMI and waist circumference as predictors of lifetime colon cancer risk in Framingham Study adults. Int. J. Obes. Relat. Metab. Disord. 28, 559–567 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Samaras, K., Botelho, N. K., Chisholm, D. J. & Lord, R. V. Subcutaneous and visceral adipose tissue gene expression of serum adipokines that predict type 2 diabetes. Obesity 18, 884–889 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Bruun, J. M., Lihn, A. S., Pedersen, S. B. & Richelsen, B. Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT. J. Clin. Endocrinol. Metab. 90, 2282–2289 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Ouchi, N., Parker, J. L., Lugus, J. J. & Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11, 85–97 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Park, J., Morley, T. S., Kim, M., Clegg, D. J. & Scherer, P. E. Obesity and cancer–mechanisms underlying tumour progression and recurrence. Nat. Rev. Endocrinol. 10, 455–465 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Calle, E. E. & Kaaks, R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 4, 579–591 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Keum, N., Lee, D. H., Kim, R., Greenwood, D. C. & Giovannucci, E. L. Visceral adiposity and colorectal adenomas: dose-response meta-analysis of observational studies. Ann. Oncol. 26, 1101–1109 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Lim, U. et al. Asian women have greater abdominal and visceral adiposity than Caucasian women with similar body mass index. Nutr. Diabetes 1, e6 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang, T. et al. Effects of obesity related genetic variations on visceral and subcutaneous fat distribution in a chinese population. Sci. Rep. 6, 20691 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Leeners, B., Geary, N., Tobler, P. N. & Asarian, L. Ovarian hormones and obesity. Hum. Reprod. Update 23, 300–321 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ning, Y., Wang, L. & Giovannucci, E. L. A quantitative analysis of body mass index and colorectal cancer: findings from 56 observational studies. Obes. Rev. 11, 19–30 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Kim, H. & Giovannucci, E. L. Sex differences in the association of obesity and colorectal cancer risk. Cancer Causes Control 28, 1–4 (2017).

    Article  PubMed  Google Scholar 

  115. Thrift, A. P. et al. Mendelian randomization study of body mass index and colorectal cancer risk. Cancer Epidemiol. Biomarkers Prev. 24, 1024–1031 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  116. World Cancer Research Fund/American Institute for Cancer Research. World Cancer Research Fund Internationl Systematic Literature Review: The Associations between Food, Nutrition and Physical Activity and the Risk of Colorectal Cancer, 2017. World Cancer Research Fund https://www.wcrf.org/sites/default/files/colorectal-cancer-slr.pdf (2017).

  117. Hetemaki, N. et al. Estrogen metabolism in abdominal subcutaneous and visceral adipose tissue in postmenopausal women. J. Clin. Endocrinol. Metab. 102, 4588–4595 (2017).

    Article  PubMed  Google Scholar 

  118. Rezende, L. F. M. et al. Physical activity and cancer: an umbrella review of the literature including 22 major anatomical sites and 770 000 cancer cases. Br. J. Sports Med. 52, 826–833 (2018).

    Article  PubMed  Google Scholar 

  119. Kushi, L. H. et al. American Cancer Society Guidelines on Nutrition and Physical Activity for Cancer Prevention: reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J. Clin. 62, 30–67 (2012).

    Article  PubMed  Google Scholar 

  120. Ainsworth, B. E. et al. 2011 Compendium of Physical Activities: a second update of codes and MET values. Med. Sci. Sports Exerc. 43, 1575–1581 (2011).

    Article  PubMed  Google Scholar 

  121. Ruiz-Casado, A. et al. Exercise and the hallmarks of cancer. Trends Cancer 3, 423–441 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Giovannucci, E. An integrative approach for deciphering the causal associations of physical activity and cancer risk: the role of adiposity. J. Natl Cancer Inst. 110, 935–941 (2018).

    Article  PubMed  Google Scholar 

  123. Ross, R. et al. Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men. A randomized, controlled trial. Ann. Intern. Med. 133, 92–103 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Ross, R. et al. Exercise-induced reduction in obesity and insulin resistance in women: a randomized controlled trial. Obes. Res. 12, 789–798 (2004).

    Article  PubMed  Google Scholar 

  125. Ismail, I., Keating, S. E., Baker, M. K. & Johnson, N. A. A systematic review and meta-analysis of the effect of aerobic vs. resistance exercise training on visceral fat. Obes. Rev. 13, 68–91 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Keum, N. et al. Association of physical activity by type and intensity with digestive system cancer risk. JAMA Oncol. 2, 1146–1153 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Schmid, D. & Leitzmann, M. F. Television viewing and time spent sedentary in relation to cancer risk: a meta-analysis. J. Natl Cancer Inst. 106, dju098 (2014).

    Article  PubMed  Google Scholar 

  128. Ma, P., Yao, Y., Sun, W., Dai, S. & Zhou, C. Daily sedentary time and its association with risk for colorectal cancer in adults: a dose-response meta-analysis of prospective cohort studies. Medicine 96, e7049 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Lynch, B. M. Sedentary behavior and cancer: a systematic review of the literature and proposed biological mechanisms. Cancer Epidemiol. Biomarkers Prev. 19, 2691–2709 (2010).

    Article  PubMed  Google Scholar 

  130. Healy, G. N. et al. Breaks in sedentary time: beneficial associations with metabolic risk. Diabetes Care 31, 661–666 (2008).

    Article  PubMed  Google Scholar 

  131. Cespedes, E. M. & Hu, F. B. Dietary patterns: from nutritional epidemiologic analysis to national guidelines. Am. J. Clin. Nutr. 101, 899–900 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Tabung, F. K., Brown, L. S. & Fung, T. T. Dietary patterns and colorectal cancer risk: a review of 17 years of evidence (2000-2016). Curr. Colorectal Cancer Rep. 13, 440–454 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Garcia-Larsen, V. et al. Dietary patterns derived from principal component analysis (PCA) and risk of colorectal cancer: a systematic review and meta-analysis. Eur. J. Clin. Nutr. 73, 366–386 (2019).

    Article  PubMed  Google Scholar 

  134. Vieira, A. R. et al. Foods and beverages and colorectal cancer risk: a systematic review and meta-analysis of cohort studies, an update of the evidence of the WCRF-AICR Continuous Update Project. Ann. Oncol. 28, 1788–1802 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Cascella, M. et al. Dissecting the mechanisms and molecules underlying the potential carcinogenicity of red and processed meat in colorectal cancer (CRC): an overview on the current state of knowledge. Infect. Agent Cancer 13, 3 (2018).

    Google Scholar 

  136. Helmus, D. S., Thompson, C. L., Zelenskiy, S., Tucker, T. C. & Li, L. Red meat-derived heterocyclic amines increase risk of colon cancer: a population-based case-control study. Nutr. Cancer 65, 1141–1150 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bastide, N. M., Pierre, F. H. & Corpet, D. E. Heme iron from meat and risk of colorectal cancer: a meta-analysis and a review of the mechanisms involved. Cancer Prev. Res. 4, 177–184 (2011).

    Article  CAS  Google Scholar 

  138. Gamage, S. M. K., Dissabandara, L., Lam, A. K. & Gopalan, V. The role of heme iron molecules derived from red and processed meat in the pathogenesis of colorectal carcinoma. Crit. Rev. Oncol. Hematol. 126, 121–128 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Fung, T. T. et al. A dietary pattern that is associated with C-peptide and risk of colorectal cancer in women. Cancer Causes Control 23, 959–965 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Tabung, F. K. et al. Association of dietary inflammatory potential with colorectal cancer risk in men and women. JAMA Oncol. 4, 366–373 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Burkitt, D. P. Epidemiology of cancer of the colon and rectum. Cancer 28, 3–13 (1971).

    Article  CAS  PubMed  Google Scholar 

  142. Holscher, H. D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 8, 172–184 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zeng, H., Lazarova, D. L. & Bordonaro, M. Mechanisms linking dietary fiber, gut microbiota and colon cancer prevention. World J. Gastrointest. Oncol. 6, 41–51 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Zeng, H., Taussig, D. P., Cheng, W. H., Johnson, L. K. & Hakkak, R. Butyrate inhibits cancerous HCT116 colon cell proliferation but to a lesser extent in noncancerous NCM460 colon cells. Nutrients 9, E25 (2017).

    Article  PubMed  CAS  Google Scholar 

  145. Elce, A. et al. Butyrate modulating effects on pro-inflammatory pathways in human intestinal epithelial cells. Benef. Microbes 8, 841–847 (2017).

    Article  CAS  PubMed  Google Scholar 

  146. Shang, F. M. & Liu, H. L. Fusobacterium nucleatum and colorectal cancer: a review. World J. Gastrointest. Oncol. 10, 71–81 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Mehta, R. S. et al. Association of dietary patterns with risk of colorectal cancer subtypes classified by fusobacterium nucleatum in tumor tissue. JAMA Oncol. 3, 921–927 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Aune, D. et al. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. BMJ 343, d6617 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Kunzmann, A. T. et al. Dietary fiber intake and risk of colorectal cancer and incident and recurrent adenoma in the prostate, lung, colorectal, and ovarian cancer screening trial. Am. J. Clin. Nutr. 102, 881–890 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Song, M. et al. Fiber intake and survival after colorectal cancer diagnosis. JAMA Oncol. 4, 71–79 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Alberts, D. S. et al. Lack of effect of a high-fiber cereal supplement on the recurrence of colorectal adenomas. phoenix colon cancer prevention physicians’ network. N. Engl. J. Med. 342, 1156–1162 (2000).

    Article  CAS  PubMed  Google Scholar 

  152. World Cancer Research Fund International/American Institute for Cancer Research. Continuous update project report: Food, nutrition, physical activity, and the prevention of colorectal cancer. World Cancer Research Fund https://www.wcrf.org/sites/default/files/Colorectal-Cancer-2011-Report.pdf (2011).

  153. International Agency for Research on Cancer. Agents Classified by the IARC Monographs, volumes 1-122. International Agency for Research on Cancer https://monographs.iarc.fr/agents-classified-by-the-iarc/ (2018).

  154. Choi, Y. J., Myung, S. K. & Lee, J. H. Light alcohol drinking and risk of cancer: a meta-analysis of cohort studies. Cancer Res. Treat. 50, 474–487 (2018).

    Article  PubMed  Google Scholar 

  155. Cho, E. et al. Alcohol intake and colorectal cancer: a pooled analysis of 8 cohort studies. Ann. Intern. Med. 140, 603–613 (2004).

    Article  PubMed  Google Scholar 

  156. Salaspuro, M. Microbial metabolism of ethanol and acetaldehyde and clinical consequences. Addict. Biol. 2, 35–46 (1997).

    Article  CAS  PubMed  Google Scholar 

  157. Seitz, H. K. & Stickel, F. Molecular mechanisms of alcohol-mediated carcinogenesis. Nat. Rev. Cancer 7, 599–612 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Giovannucci, E. Alcohol, one-carbon metabolism, and colorectal cancer: recent insights from molecular studies. J. Nutr. 134, 2475S–2481S (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Chang, J. S., Hsiao, J. R. & Chen, C. H. ALDH2 polymorphism and alcohol-related cancers in Asians: a public health perspective. J. Biomed. Sci. 24, 19 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Li, H. et al. Refined geographic distribution of the oriental ALDH2*504Lys (nee 487Lys) variant. Ann. Hum. Genet. 73, 335–345 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Mizoue, T. et al. Alcohol drinking and colorectal cancer in Japanese: a pooled analysis of results from five cohort studies. Am. J. Epidemiol. 167, 1397–1406 (2008).

    Article  PubMed  Google Scholar 

  162. Zhao, H., Liu, K. J., Lei, Z. D., Lei, S. L. & Tian, Y. Q. Meta-analysis of the aldehyde dehydrogenases-2 (ALDH2) Glu487Lys polymorphism and colorectal cancer risk. PLOS ONE 9, e88656 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Giovannucci, E. & Martinez, M. E. Tobacco, colorectal cancer, and adenomas: a review of the evidence. J. Natl Cancer Inst. 88, 1717–1730 (1996).

    Article  CAS  PubMed  Google Scholar 

  164. Johnson, C. M. et al. Meta-analyses of colorectal cancer risk factors. Cancer Causes Control 24, 1207–1222 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Limsui, D. et al. Cigarette smoking and colorectal cancer risk by molecularly defined subtypes. J. Natl Cancer Inst. 102, 1012–1022 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Carr, P. R. et al. Lifestyle factors and risk of sporadic colorectal cancer by microsatellite instability status: a systematic review and meta-analyses. Ann. Oncol. 29, 825–834 (2018).

    Article  PubMed  Google Scholar 

  167. Figueiredo, J. et al. Smoking-association risks of conventional adenomas and serrated polyps in the colorectum. Cancer Causes Control 26, 377–389 (2015).

    Article  PubMed  Google Scholar 

  168. Zeilinger, S. et al. Tobacco smoking leads to extensive genome-wide changes in DNA methylation. PLOS ONE 8, e63812 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Nishihara, R. et al. A prospective study of duration of smoking cessation and colorectal cancer risk by epigenetics-related tumor classification. Am. J. Epidemiol. 178, 84–100 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Bae, J. M., Kim, J. H. & Kang, G. H. Molecular subtypes of colorectal cancer and their clinicopathologic features, with an emphasis on the serrated neoplasia pathway. Arch. Pathol. Lab. Med. 140, 406–412 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. Rogot, E. & Murray, J. L. Smoking and causes of death among U.S. veterans: 16 years of observation. Public Health Rep. 95, 213–222 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Heineman, E. F., Zahm, S. H., McLaughlin, J. K. & Vaught, J. B. Increased risk of colorectal cancer among smokers: results of a 26-year follow-up of US veterans and a review. Int. J. Cancer 59, 728–738 (1994).

    Article  CAS  PubMed  Google Scholar 

  173. Lin, J. H. et al. Association between sex hormones and colorectal cancer risk in men and women. Clin. Gastroenterol. Hepatol. 11, 419–424.e1 (2013).

    Article  CAS  PubMed  Google Scholar 

  174. Freeman, E. W., Sammel, M. D., Lin, H. & Gracia, C. R. Obesity and reproductive hormone levels in the transition to menopause. Menopause 17, 718–726 (2010).

    PubMed  PubMed Central  Google Scholar 

  175. Kelly, D. M. & Jones, T. H. Testosterone and obesity. Obes. Rev. 16, 581–606 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Hillman, E. T., Lu, H., Yao, T. & Nakatsu, C. H. Microbial ecology along the gastrointestinal tract. Microbes Environ. 32, 300–313 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Flemer, B. et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 66, 633–643 (2017).

    Article  CAS  PubMed  Google Scholar 

  178. Zhang, Y. et al. Changes in gut microbiota and plasma inflammatory factors across the stages of colorectal tumorigenesis: a case-control study. BMC Microbiol. 18, 92 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. O’Keefe, S. J. et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat. Commun. 6, 6342 (2015).

    Article  PubMed  CAS  Google Scholar 

  180. Allen, J. M. et al. Exercise alters gut microbiota composition and function in lean and obese humans. Med. Sci. Sports Exerc. 50, 747–757 (2018).

    Article  PubMed  Google Scholar 

  181. Louis, S., Tappu, R. M., Damms-Machado, A., Huson, D. H. & Bischoff, S. C. Characterization of the gut microbial community of obese patients following a weight-loss intervention using whole metagenome shotgun sequencing. PLOS ONE 11, e0149564 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    Article  CAS  PubMed  Google Scholar 

  183. Coker, O. O. et al. Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut 68, 654–662 (2019).

    Article  CAS  PubMed  Google Scholar 

  184. Nakatsu, G. et al. Alterations in enteric virome are associated with colorectal cancer and survival outcomes. Gastroenterology 155, 529–541.e5 (2018).

    Article  PubMed  Google Scholar 

  185. Rothwell, P. M. et al. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet 376, 1741–1750 (2010).

    Article  CAS  PubMed  Google Scholar 

  186. Cook, N. R. et al. Low-dose aspirin in the primary prevention of cancer the women’s health study: a randomized controlled trial. JAMA 294, 47–55 (2005).

    Article  CAS  PubMed  Google Scholar 

  187. Cook, N. R., Lee, I. M., Zhang, S. M. M., Moorthy, M. V. & Buring, J. E. Alternate-day, low-dose aspirin and cancer risk: long-term observational follow-up of a randomized trial. Ann. Int. Med. 159, 77–85 (2013).

    Article  PubMed  Google Scholar 

  188. Giovannucci, E. et al. Aspirin and the risk of colorectal-cancer in women. N. Engl. J. Med. 333, 609–614 (1995).

    Article  CAS  PubMed  Google Scholar 

  189. Cole, B. F. et al. Aspirin for the chemoprevention of colorectal adenomas: meta-analysis of the randomized trials. J. Natl Cancer Inst. 101, 256–266 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Cao, Y. et al. Population-wide impact of long-term use of aspirin and the risk for cancer. JAMA Oncol. 2, 762–769 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Zelenay, S. et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162, 1257–1270 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Chan, A. T., Ogino, S. & Fuchs, C. S. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N. Engl. J. Med. 356, 2131–2142 (2007).

    Article  CAS  PubMed  Google Scholar 

  193. Cao, Y. et al. Regular aspirin use associates with lower risk of colorectal cancers with low numbers of tumor-infiltrating lymphocytes. Gastroenterology 151, 879–892.e4 (2016).

    Article  CAS  PubMed  Google Scholar 

  194. Keum, N., Aune, D., Greenwood, D. C., Ju, W. & Giovannucci, E. L. Calcium intake and colorectal cancer risk: dose-response meta-analysis of prospective observational studies. Int. J. Cancer 135, 1940–1948 (2014).

    Article  CAS  PubMed  Google Scholar 

  195. Bristow, S. M. et al. Calcium supplements and cancer risk: a meta-analysis of randomised controlled trials. Br. J. Nutr. 110, 1384–1393 (2013).

    Article  CAS  PubMed  Google Scholar 

  196. Wactawski-Wende, J. et al. Calcium plus vitamin D supplementation and the risk of colorectal cancer. N. Engl. J. Med. 354, 684–696 (2006).

    Article  CAS  PubMed  Google Scholar 

  197. Lappe, J. et al. Effect of vitamin D and calcium supplementation on cancer incidence in older women: a randomized clinical trial. JAMA 317, 1234–1243 (2017).

    Article  CAS  PubMed  Google Scholar 

  198. Zhang, X. et al. Calcium intake and colorectal cancer risk: results from the Nurses’ Health Study and Health Professionals Follow-up Study. Int. J. Cancer 139, 2232–2242 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Keum, N., Lee, D. H., Greenwood, D. C., Zhang, X. & Giovannucci, E. L. Calcium intake and colorectal adenoma risk: dose-response meta-analysis of prospective observational studies. Int. J. Cancer 136, 1680–1687 (2015).

    Article  CAS  PubMed  Google Scholar 

  200. Veettil, S. K. et al. Effects of calcium on the incidence of recurrent colorectal adenomas: a systematic review with meta-analysis and trial sequential analysis of randomized controlled trials. Medicine 96, e7661 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Lamprecht, S. A. & Lipkin, M. Chemoprevention of colon cancer by calcium, vitamin D and folate: molecular mechanisms. Nat. Rev. Cancer 3, 601–614 (2003).

    Article  CAS  PubMed  Google Scholar 

  202. Tennakoon, S., Aggarwal, A. & Kallay, E. The calcium-sensing receptor and the hallmarks of cancer. Biochim. Biophys. Acta 1863, 1398–1407 (2016).

    Article  CAS  PubMed  Google Scholar 

  203. Ahearn, T. U., Shaukat, A., Flanders, W. D., Rutherford, R. E. & Bostick, R. M. A randomized clinical trial of the effects of supplemental calcium and vitamin D3 on the APC/β-catenin pathway in the normal mucosa of colorectal adenoma patients. Cancer Prev. Res. 5, 1247–1256 (2012).

    Article  CAS  Google Scholar 

  204. PDQ Screening and Prevention Editorial Board. Colorectal Cancer Screening (PDQ®): Health Professional Version. PDQ Cancer Information Summaries. NIH.gov https://www.ncbi.nlm.nih.gov/books/NBK65825/ (2012).

  205. Wieten, E. et al. Incidence of faecal occult blood test interval cancers in population-based colorectal cancer screening: a systematic review and meta-analysis. Gut 68, 873-881 (2019).

    Article  PubMed  CAS  Google Scholar 

  206. Imperiale, T. F. et al. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med. 370, 1287–1297 (2014).

    Article  CAS  PubMed  Google Scholar 

  207. Brenner, H. & Chen, H. Fecal occult blood versus DNA testing: indirect comparison in a colorectal cancer screening population. Clin. Epidemiol. 9, 377–384 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  208. US Preventive Services Task Force, Bibbins-Domingo, K. et al. Screening for colorectal cancer: us preventive services task force recommendation statement. JAMA 315, 2564–2575 (2016).

    Article  CAS  Google Scholar 

  209. Welch, H. G. & Black, W. C. Overdiagnosis in cancer. J. Natl Cancer Inst. 102, 605–613 (2010).

    Article  PubMed  Google Scholar 

  210. Lansdorp-Vogelaar, I., Knudsen, A. B. & Brenner, H. Cost-effectiveness of colorectal cancer screening. Epidemiol. Rev. 33, 88–100 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Tinmouth, J., Lansdorp-Vogelaar, I. & Allison, J. E. Faecal immunochemical tests versus guaiac faecal occult blood tests: what clinicians and colorectal cancer screening programme organisers need to know. Gut 64, 1327–1337 (2015).

    Article  CAS  PubMed  Google Scholar 

  212. Wolf, A. M. D. et al. Colorectal cancer screening for average-risk adults: 2018 guideline update from the American Cancer Society. CA Cancer J. Clin. 68, 250–281 (2018).

    Article  PubMed  Google Scholar 

  213. Inadomi, J. M. et al. Adherence to colorectal cancer screening: a randomized clinical trial of competing strategies. Arch. Intern. Med. 172, 575–582 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Ebell, M. H., Thai, T. N. & Royalty, K. J. Cancer screening recommendations: an international comparison of high income countries. Public Health Rev. 39, 7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Keum, N. & Giovannucci, E. L. Folic acid fortification and colorectal cancer risk. Am. J. Prev. Med. 46, S65–S72 (2014).

    Article  PubMed  Google Scholar 

  216. Cokkinides, V., Bandi, P., Shah, M., Virgo, K. & Ward, E. The association between state mandates of colorectal cancer screening coverage and colorectal cancer screening utilization among US adults aged 50 to 64 years with health insurance. BMC Health Serv. Res. 11, 19 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  217. James, T. M., Greiner, K. A., Ellerbeck, E. F., Feng, C. & Ahluwalia, J. S. Disparities in colorectal cancer screening: a guideline-based analysis of adherence. Ethn. Dis. 16, 228–233 (2006).

    PubMed  Google Scholar 

  218. Syngal, S. et al. ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am. J. Gastroenterol. 110, 223–262; quiz 263 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Rex, D. K. et al. Colorectal cancer screening: recommendations for physicians and patients from the U.S. Multi-Society Task Force on Colorectal Cancer. Gastroenterology 153, 307–323 (2017).

    Article  PubMed  Google Scholar 

  220. Veronese, N. et al. Combined associations of body weight and lifestyle factors with all cause and cause specific mortality in men and women: prospective cohort study. BMJ 355, i5855 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Dulai, P. S. et al. Chemoprevention of colorectal cancer in individuals with previous colorectal neoplasia: systematic review and network meta-analysis. BMJ 355, i6188 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Cea Soriano, L., Lanas, A., Soriano-Gabarro, M. & Garcia Rodriguez, L. A. Incidence of upper and lower gastrointestinal bleeding in new users of low-dose aspirin. Clin. Gastroenterol. Hepatol. 17, 887-895.e6 (2019).

  223. Chubak, J., Kamineni, A., Buist, D. S. M., Anderson, M. L. & Whitlock, E. P. Aspirin Use for the Prevention of Colorectal Cancer: An Updated Systematic Evidence Review for the U.S. Preventive Services Task Force (Report No.: 15-05228-EF-1), NIH.gov https://www.ncbi.nlm.nih.gov/books/NBK321661/ (2015).

  224. Drew, D. A. et al. ASPirin Intervention for the REDuction of colorectal cancer risk (ASPIRED): a study protocol for a randomized controlled trial. Trials 18, 50 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Han, C. et al. Dietary calcium intake and the risk of colorectal cancer: a case control study. BMC Cancer 15, 966 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Shin, A. et al. Dietary intake of calcium, fiber and other micronutrients in relation to colorectal cancer risk: results from the Shanghai Women’s Health Study. Int. J. Cancer 119, 2938–2942 (2006).

    Article  CAS  PubMed  Google Scholar 

  227. Ishihara, J., Inoue, M., Iwasaki, M., Sasazuki, S. & Tsugane, S. Dietary calcium, vitamin D, and the risk of colorectal cancer. Am. J. Clin. Nutr. 88, 1576–1583 (2008).

    Article  CAS  PubMed  Google Scholar 

  228. Jones, R. M., Devers, K. J., Kuzel, A. J. & Woolf, S. H. Patient-reported barriers to colorectal cancer screening: a mixed-methods analysis. Am. J. Prev. Med. 38, 508–516 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Li, Y. et al. Impact of healthy lifestyle factors on life expectancies in the US population. Circulation 138, 345–355 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Jeon, J. et al. Determining risk of colorectal cancer and starting age of screening based on lifestyle, environmental, and genetic factors. Gastroenterology 154, 2152–2164.e19 (2018).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

N.K. was supported by grants from the National Research Foundation of Korea (NRF-2018R1C1B6008822; NRF-2018R1A4A1022589).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data for the article, discussion of content, and writing, reviewing and editing of the manuscript before submission.

Corresponding author

Correspondence to Edward Giovannucci.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewer information

Nature Reviews Gastroenterology & Hepatology thanks M. Hoffmeister, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keum, N., Giovannucci, E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol 16, 713–732 (2019). https://doi.org/10.1038/s41575-019-0189-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-019-0189-8

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer