Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death

Key Points

  • Receptor-interacting protein 1 (RIP1) contains an amino-terminal kinase domain, a carboxy-terminal death domain and an intermediate domain with a receptor-interacting protein homotypic interaction motif (RHIM).

  • RIP1 has emerged as a key upstream regulator that controls inflammatory signalling as well as the activation of multiple cell death pathways, including apoptosis and necroptosis.

  • The ability of RIP1 to modulate these key cellular events is tightly controlled by ubiquitylation, deubiquitylation and the interaction of RIP1 with a class of ubiquitin receptors.

  • Ubiquitylation of RIP1 might provide a unique 'ubiquitin code' that determines whether a cell activates cell survival through the nuclear factor-κB (NF-κB)-dependent or -independent pathways or induces cell death through necroptosis or apoptosis.

  • Targeting RIP1 kinase might provide novel therapeutics for the treatment of both acute and chronic human diseases.

Abstract

Receptor-interacting protein 1 (RIP1) kinase has emerged as a key upstream regulator that controls inflammatory signalling as well as the activation of multiple cell death pathways, including apoptosis and necroptosis. The ability of RIP1 to modulate these key cellular events is tightly controlled by ubiquitylation, deubiquitylation and the interaction of RIP1 with a class of ubiquitin receptors. The modification of RIP1 may thus provide a unique 'ubiquitin code' that determines whether a cell activates nuclear factor-κB (NF-κB) to promote inflammatory signalling or induces cell death by apoptosis or necroptosis. Targeting RIP1 might be a novel therapeutic strategy for the treatment of both acute and chronic human diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RIP1-mediated multimodal signalling events downstream of TNFR1.
Figure 2: The domains and post-translational modifications of RIP1.
Figure 3: The involvement of RIP1 in TLR4 signalling.
Figure 4: The caspase 8 cleavage site at Asp324 of RIP1 in the intermediate domain.

Similar content being viewed by others

References

  1. Stanger, B. Z., Leder, P., Lee, T. H., Kim, E. & Seed, B. RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81, 513–523 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Ting, A. T., Pimentel-Muinos, F. X. & Seed, B. RIP mediates tumor necrosis factor receptor 1 activation of NF-κB but not Fas/APO-1-initiated apoptosis. EMBO J. 15, 6189–6196 (1996). Shows the crucial role of RIP1 in mediating NF-κB activation downstream of TNFR1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Christofferson, D. E. et al. A novel role for RIP1 kinase in mediating TNFα production. Cell Death Dis. 3, e320 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Degterev, A. et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nature Chem. Biol. 4, 313–321 (2008). Demonstrates that RIP1 kinase is the target of necrostatin 1.

    Article  CAS  Google Scholar 

  5. Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nature Immunol. 1, 489–495 (2000). The first paper showing a crucial role of RIP1 kinase in mediating necrotic cell death in Jurkat T cells activated by FAS.

    Article  CAS  Google Scholar 

  6. Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature Chem. Biol. 1, 112–119 (2005). Describes the identification of necrostatin 1 and defines necroptosis as a caspase-independent form of necrotic cell death.

    Article  CAS  Google Scholar 

  7. Wang, L., Du, F. & Wang, X. TNF-α induces two distinct caspase-8 activation pathways. Cell 133, 693–703 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Christofferson, D. E. & Yuan, J. Necroptosis as an alternative form of programmed cell death. Curr. Opin. Cell Biol. 22, 263–268 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. O'Donnell, M. A. & Ting, A. T. NFκB and ubiquitination: partners in disarming RIPK1-mediated cell death. Immunol. Res. 54, 214–226 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Darding, M. & Meier, P. IAPs: guardians of RIPK1. Cell Death Differ. 19, 58–66 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Chan, F. K. Fueling the flames: mammalian programmed necrosis in inflammatory diseases. Cold Spring Harb. Perspect. Biol. 4, pii: a008805 (2012).

    Article  CAS  Google Scholar 

  12. Xie, T. et al. Structural basis of RIP1 inhibition by necrostatins. Structure 21, 493–499 (2013). Reports the X-ray crystal structure of the RIP1–necrostatin 1 complex.

    Article  CAS  PubMed  Google Scholar 

  13. Ea, C. K., Deng, L., Xia, Z. P., Pineda, G. & Chen, Z. J. Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245–257 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Li, H., Kobayashi, M., Blonska, M., You, Y. & Lin, X. Ubiquitination of RIP is required for tumor necrosis factor-α-induced NF-κB activation. J. Biol. Chem. 281, 13636–13643 (2006). References 13 and 14 show that Lys377 of RIP1 is the site of ubiquitylation required for NF-κB activation.

    Article  CAS  PubMed  Google Scholar 

  15. O'Donnell, M. A., Legarda-Addison, D., Skountzos, P., Yeh, W. C. & Ting, A. T. Ubiquitination of RIP1 regulates an NF-κB-independent cell-death switch in TNF signaling. Curr. Biol. 17, 418–424 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun, X., Yin, J., Starovasnik, M. A., Fairbrother, W. J. & Dixit, V. M. Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3. J. Biol. Chem. 277, 9505–9511 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Upton, J. W., Kaiser, W. J. & Mocarski, E. S. Cytomegalovirus M45 cell death suppression requires RHIM-dependent interaction with receptor-interacting protein 1 (RIP1). J. Biol. Chem. 283, 16966–16970 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaiser, W. J. & Offermann, M. K. Apoptosis induced by the Toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif. J. Immunol. 174, 4942–4952 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Rebsamen, M. et al. DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-κB. EMBO Rep. 10, 916–922 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, J. et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150, 339–350 (2012). Describes the formation of an amyloid-like structure by the RHIMs of RIP1 and RIP3 in mediating necroptosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Park, H. H. et al. The death domain superfamily in intracellular signaling of apoptosis and inflammation. Annu. Rev. Immunol. 25, 561–586 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Park, Y. H., Jeong, M. S., Park, H. H. & Jang, S. B. Formation of the death domain complex between FADD and RIP1 proteins in vitro. Biochim. Biophys. Acta 1834, 292–300 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Hsu, H., Xiong, J. & Goeddel, D. V. The TNF receptor 1-associated protein TRADD signals cell death and NF-κB activation. Cell 81, 495–504 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Hsu, H., Shu, H. B., Pan, M. G. & Goeddel, D. V. TRADD–TRAF2 and TRADD–FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84, 299–308 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Hsu, H., Huang, J., Shu, H. B., Baichwal, V. & Goeddel, D. V. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4, 387–396 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Shu, H. B., Takeuchi, M. & Goeddel, D. V. The tumor necrosis factor receptor 2 signal transducers TRAF2 and c-IAP1 are components of the tumor necrosis factor receptor 1 signaling complex. Proc. Natl Acad. Sci. USA 93, 13973–13978 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rothe, M., Pan, M. G., Henzel, W. J., Ayres, T. M. & Goeddel, D. V. The TNFR2–TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 83, 1243–1252 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181–190 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Cusson-Hermance, N., Khurana, S., Lee, T. H., Fitzgerald, K. A. & Kelliher, M. A. Rip1 mediates the Trif-dependent Toll-like receptor 3- and 4-induced NF-κB activation but does not contribute to interferon regulatory factor 3 activation. J. Biol. Chem. 280, 36560–36566 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Meylan, E. et al. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-κB activation. Nature Immunol. 5, 503–507 (2004).

    Article  CAS  Google Scholar 

  31. Chang, M., Jin, W. & Sun, S. C. Peli1 facilitates TRIF-dependent Toll-like receptor signaling and proinflammatory cytokine production. Nature Immunol. 10, 1089–1095 (2009).

    Article  CAS  Google Scholar 

  32. Lukens, J. R. et al. RIP1-driven autoinflammation targets IL-1α independently of inflammasomes and RIP3. Nature 498, 224–227 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1–RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137, 1100–1111 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Hitomi, J. et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135, 1311–1323 (2008). Describes a genome-wide siRNA screen for genes involved in mediating necroptosis, thereby expanding our knowledge of the cellular pathways involved in this cell death modality.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rajput, A. et al. RIG-I RNA helicase activation of IRF3 transcription factor is negatively regulated by caspase-8-mediated cleavage of the RIP1 protein. Immunity 34, 340–351 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Thapa, R. J. et al. Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. Proc. Natl Acad. Sci. USA 110, E3109–E3118 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bertrand, M. J. et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell 30, 689–700 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Gaither, A. et al. A Smac mimetic rescue screen reveals roles for inhibitor of apoptosis proteins in tumor necrosis factor-α signaling. Cancer Res. 67, 11493–11498 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Petersen, S. L. et al. Autocrine TNFα signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 12, 445–456 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wong, W. W. et al. RIPK1 is not essential for TNFR1-induced activation of NF-κB. Cell Death Differ. 17, 482–487 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Geserick, P. et al. Cellular IAPs inhibit a cryptic CD95-induced cell death by limiting RIP1 kinase recruitment. J. Cell Biol. 187, 1037–1054 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Malynn, B. A. & Ma, A. Ubiquitin makes its mark on immune regulation. Immunity 33, 843–852 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mollah, S. et al. Targeted mass spectrometric strategy for global mapping of ubiquitination on proteins. Rapid Commun. Mass Spectrom. 21, 3357–3364 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Kim, W. et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44, 325–340 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Newton, K. et al. Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 134, 668–678 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Bertrand, M. J. et al. cIAP1/2 are direct E3 ligases conjugating diverse types of ubiquitin chains to receptor interacting proteins kinases 1 to 4 (RIP1–4). PloS ONE 6, e22356 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Samuel, T. et al. Distinct BIR domains of cIAP1 mediate binding to and ubiquitination of tumor necrosis factor receptor-associated factor 2 and second mitochondrial activator of caspases. J. Biol. Chem. 281, 1080–1090 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Kanayama, A. et al. TAB2 and TAB3 activate the NF-κB pathway through binding to polyubiquitin chains. Mol. Cell 15, 535–548 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Laplantine, E. et al. NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain. EMBO J. 28, 2885–2895 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu, C. J., Conze, D. B., Li, T. Srinivasula, S. M. & Ashwell, J. D. Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-κB activation. Nature Cell Biol. 8, 398–406 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Zheng, L. et al. Competitive control of independent programs of tumor necrosis factor receptor-induced cell death by TRADD and RIP1. Mol. Cell. Biol. 26, 3505–3513 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xia, Z. P. et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 461, 114–119 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rieser, E., Cordier, S. M. & Walczak, H. Linear ubiquitination: a newly discovered regulator of cell signalling. Trends Biochem. Sci. 38, 94–102 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Tokunaga, F. et al. Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nature Cell Biol. 11, 123–132 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Rahighi, S. et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell 136, 1098–1109 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Ikeda, F. et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 471, 637–641 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tokunaga, F. et al. SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature 471, 633–636 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Legarda-Addison, D., Hase, H., O'Donnell, M. A. & Ting, A. T. NEMO/IKKγ regulates an early NF-κB-independent cell-death checkpoint during TNF signaling. Cell Death Differ. 16, 1279–1288 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Shim, J. H. et al. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev. 19, 2668–2681 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Arslan, S. C. & Scheidereit, C. The prevalence of TNFα-induced necrosis over apoptosis is determined by TAK1–RIP1 interplay. PLoS ONE 6, e26069 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Krikos, A., Laherty, C. D. & Dixit, V. M. Transcriptional activation of the tumor necrosis factor-α-inducible zinc finger protein, A20, is mediated by κB elements. J. Biol. Chem. 267, 17971–17976 (1992).

    CAS  PubMed  Google Scholar 

  66. Beyaert, R., Heyninck, K. & Van Huffel, S. A20 and A20-binding proteins as cellular inhibitors of nuclear factor-κB-dependent gene expression and apoptosis. Biochem. Pharmacol. 60, 1143–1151 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Shembade, N., Parvatiyar, K., Harhaj, N. S. & Harhaj, E. W. The ubiquitin-editing enzyme A20 requires RNF11 to downregulate NF-κB signalling. EMBO J. 28, 513–522 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shembade, N., Ma, A. & Harhaj, E. W. Inhibition of NF-κB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 327, 1135–1139 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  71. Lee, E. G. et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Matmati, M. et al. A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nature Genet. 43, 908–912 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Bignell, G. R. et al. Identification of the familial cylindromatosis tumour-suppressor gene. Nature Genet. 25, 160–165 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Trompouki, E. et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature 424, 793–796 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Kovalenko, A. et al. The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature 424, 801–805 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Brummelkamp, T. R., Nijman, S. M., Dirac, A. M. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 424, 797–801 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Wright, A. et al. Regulation of early wave of germ cell apoptosis and spermatogenesis by deubiquitinating enzyme CYLD. Dev. Cell 13, 705–716 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Hutti, J. E. et al. Phosphorylation of the tumor suppressor CYLD by the breast cancer oncogene IKKɛ promotes cell transformation. Mol. Cell 34, 461–472 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Reiley, W., Zhang, M., Wu, X., Granger, E. & Sun, S. C. Regulation of the deubiquitinating enzyme CYLD by IκB kinase γ-dependent phosphorylation. Mol. Cell. Biol. 25, 3886–3895 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. O'Donnell, M. A. et al. Caspase 8 inhibits programmed necrosis by processing CYLD. Nature Cell Biol. 13, 1437–1442 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Reiley, W. W. et al. Deubiquitinating enzyme CYLD negatively regulates the ubiquitin-dependent kinase Tak1 and prevents abnormal T cell responses. J. Exp. Med. 204, 1475–1485 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Oberst, A. et al. Catalytic activity of the caspase-8–FLIPL complex inhibits RIPK3-dependent necrosis. Nature 471, 363–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kaiser, W. J. et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471, 368–372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dillon, C. P. et al. Survival function of the FADD–CASPASE-8–cFLIPL complex. Cell Rep. 1, 401–407 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lin, Y., Devin, A., Rodriguez, Y. & Liu, Z. G. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 13, 2514–2526 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kovalenko, A. et al. Caspase-8 deficiency in epidermal keratinocytes triggers an inflammatory skin disease. J. Exp. Med. 206, 2161–2177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gunther, C. et al. Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis. Nature 477, 335–339 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fricker, M., Vilalta, A., Tolkovsky, A. M. & Brown, G. C. Caspase inhibitors protect neurons by enabling selective necroptosis of inflamed microglia. J. Biol. Chem. 288, 9145–9152 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Degterev, A., Maki, J. L. & Yuan, J. Activity and specificity of necrostatin-1, small-molecule inhibitor of RIP1 kinase. Cell Death Differ. 20, 366 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Takahashi, N. et al. Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis. 3, e437 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu, Y. & Gray, N. S. Rational design of inhibitors that bind to inactive kinase conformations. Nature Chem. Biol. 2, 358–364 (2006).

    Article  CAS  Google Scholar 

  92. Rudolph, D. et al. Severe liver degeneration and lack of NF-κB activation in NEMO/IKKγ-deficient mice. Genes Dev. 14, 854–862 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Oshima, S. et al. ABIN-1 is a ubiquitin sensor that restricts cell death and sustains embryonic development. Nature 457, 906–909 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Iha, H. et al. Inflammatory cardiac valvulitis in TAX1BP1-deficient mice through selective NF-κB activation. EMBO J. 27, 629–641 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sanjo, H. et al. TAB2 is essential for prevention of apoptosis in fetal liver but not for interleukin-1 signaling. Mol. Cell. Biol. 23, 1231–1238 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rodriguez, A. et al. Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62. Cell. Metabolism 3, 211–222 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the Yuan laboratory for stimulating discussions. Work in the authors' laboratory was supported in part by a Merit Award from the National Institute on Aging and a Senior Fellowship from the Ellison Foundation (to J.Y.). D.O. was supported in part by the Molecular Biology of Neurodegeneration Training Grant from the National Institute of Neurological Disorders and Stroke (Principle Investigator B. Yankner) and a fellowship from the MS Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junying Yuan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Toll-like receptor

(TLR). A family of single membrane-spanning receptors that can be activated by structurally conserved molecules derived from microorganisms. They have a key role in innate immunity.

Necroptosis

A caspase-independent necrotic cell death pathway that is controlled by receptor-interacting protein 1 (RIP1) kinase and its downstream mediator RIP3 kinase.

Apoptosis

An evolutionarily conserved cell death mechanism that is executed by caspases.

Death receptor

A family of single membrane-spanning receptors that are characterized by an intracellular death domain. They have a role in mediating inflammation and cell death.

Complex I

The protein complex that is formed at the intracellular death domain of TNF receptor 1 (TNFR1) upon stimulation by tumour necrosis factor (TNF). This complex includes TNFR1-associated death domain protein (TRADD), receptor-interacting protein 1 (RIP1), TNFR-associated factor 2 (TRAF2) and/or TRAF5, as well as cellular inhibitor of apoptosis protein 1 (cIAP1) and/or cIAP2.

Inflammasome

A protein complex that is involved in mediating caspase 1 activation and interleukin-1 (IL-1) processing during inflammation.

Necrostatin 1

A highly specific small-molecule inhibitor of receptor-interacting protein 1 (RIP1) kinase. 7-Cl-O-Nec-1 (5-(7-chloro-1H-indol-3-yl)methyl)-3-methylimidazolidine-2,4-dione) is an improved analogue of necrostatin 1. This analogue binds to RIP1 kinase with high affinity (with a dissociation constant (Kd) of 3 nM) and is suitable for in vivo use in animal models.

Complex IIb

A cytosolic complex that includes receptor-interacting protein 1 (RIP1) and RIP3. This complex is formed downstream of complex I upon the activation of TNF receptor 1 (TNFR1) by tumour necrosis factor (TNF) to mediate necroptosis.

Complex IIa

A cytosolic complex comprising receptor- interacting protein 1 (RIP1), FAS-associated death domain protein (FADD) and caspase 8. This complex is formed downstream of complex I upon the activation of TNF receptor 1 (TNFR1) by tumour necrosis factor (TNF) to mediate apoptosis.

Chronic proliferative dermatitis mutation mice

(cpdm mice). CPD is a spontaneous mutation in C57BL/Ka mice (cpdm/cpdm). The dermatitis is characterized by redness, hair loss, scaling and pruritus and histologically by epithelial hyperproliferation and infiltration of eosinophils, macrophages and mast cells.

Paneth cells

A type of intestinal epithelial cell identified microscopically by their location just below the intestinal stem cells in the intestines. They have important functions in the maintenance of the gastrointestinal barrier.

Goblet cells

A type of intestinal epithelial cell that secretes mucin, which dissolves in water to form mucus. They are important to preserve the integrity of the intestine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ofengeim, D., Yuan, J. Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol 14, 727–736 (2013). https://doi.org/10.1038/nrm3683

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3683

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing