Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

NAFLD, NASH and liver cancer

Abstract

NAFLD affects a large proportion of the US population and its incidence and prevalence are increasing to epidemic proportions around the world. As with other liver diseases that cause cirrhosis, NAFLD increases the risk of liver cancer, a disease with poor outcomes and limited therapeutic options. The incidences of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma are also rising, and HCC is now the leading cause of obesity-related cancer deaths in middle-aged men in the USA. In this Review, we summarize the correlations between liver cancer and NAFLD-related cirrhosis, and the role of the metabolic syndrome in the development of liver cancer from diverse aetiologies, including HCV-mediated cirrhosis. Recent advances in understanding the progression of NAFLD to HCC from preclinical models will also be discussed. Targeted genetic manipulation of certain metabolic or stress-response pathways, including one-carbon metabolism, NF-κB, PTEN and microRNAs, has been valuable in elucidating the pathways that regulate carcinogenesis in NAFLD. Although tremendous advances have occurred in the identification of diagnostic and therapeutic opportunities to reduce the progression of NAFLD, considerable gaps in our knowledge remain with regard to the mechanisms by which NAFLD and its risk factors promote liver cancer.

Key Points

  • NAFLD is strongly associated with obesity and the metabolic syndrome; as with these conditions, the incidence and prevalence of NAFLD are increasing to epidemic proportions

  • Similar to other liver diseases that cause cirrhosis, NAFLD increases the risk of liver cancer

  • Liver cancers generally arise after NAFLD-related cirrhosis has developed, but can also occur in patients with NAFLD before cirrhosis ensues

  • The metabolic syndrome increases the risk of liver cancer in individuals with other liver diseases (for example, cirrhosis caused by chronic HCV infection)

  • Targeted genetic manipulation of certain metabolic or stress-response pathways causes NAFLD and liver cancer in experimental animal models

  • A subset of human liver cancers has a gene expression profile indicative of defective intermediary metabolism

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of pathways that regulate NAFLD-mediated carcinogenesis.

Similar content being viewed by others

References

  1. Lazo, M. et al. Prevalence of nonalcoholic fatty liver disease in the United States: The Third National Health and Nutrition Examination Survey, 1988–1994. Am. J. Epidemiol. 178, 38–45 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Clark, J. M., Brancati, F. L. & Diehl, A. M. The prevalence and etiology of elevated aminotransferase levels in the United States. Am. J. Gastroenterol. 98, 960–967 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Adams, L. A. et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 129, 113–121 (2005).

    Article  PubMed  Google Scholar 

  4. McCullough, A. J. The clinical features, diagnosis and natural history of nonalcoholic fatty liver disease. Clin. Liver Dis. 8, 521–533 (2004).

    Article  PubMed  Google Scholar 

  5. Holmberg, S. D., Spradling, P. R., Moorman, A. C. & Denniston, M. M. Hepatitis C in the United States. N. Engl. J. Med. 368, 1859–1861 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yasui, K. et al. Clinical and pathological progression of non-alcoholic steatohepatitis to hepatocellular carcinoma. Hepatol. Res. 42, 767–773 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Sorensen, H. T. et al. Risk of cancer in patients hospitalized with fatty liver: a Danish cohort study. J. Clin. Gastroenterol. 36, 356–359 (2003).

    Article  PubMed  Google Scholar 

  8. Yang, J. D. et al. Hepatocellular carcinoma in Olmsted County, Minnesota, 1976–2008. Mayo Clinic Proc. 87, 9–16 (2012).

    Article  Google Scholar 

  9. Hucke, F., Sieghart, W., Schöniger-Hekele, M., Peck-Radosavljevic, M. & Müller, C. Clinical characteristics of patients with hepatocellular carcinoma in Austria—is there a need for a structured screening program? Wien. Klin. Wochenschr. 123, 542–551 (2011).

    Article  PubMed  Google Scholar 

  10. Ertle, J. et al. Non-alcoholic fatty liver disease progresses to hepatocellular carcinoma in the absence of apparent cirrhosis. Int. J. Cancer 128, 2436–2443 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Malik, S. M., Gupte, P. A., de Vera, M. E. & Ahmad, J. Liver transplantation in patients with nonalcoholic steatohepatitis-related hepatocellular carcinoma. Clin. Gastroenterol. Hepatol. 7, 800–806 (2009).

    Article  PubMed  Google Scholar 

  12. Kawada, N. et al. Hepatocellular carcinoma arising from non-cirrhotic nonalcoholic steatohepatitis. J. Gastroenterol. 44, 1190–1194 (2009).

    Article  PubMed  Google Scholar 

  13. Tokushige, K., Hashimoto, E., Horie, Y., Taniai, M. & Higuchi, S. Hepatocellular carcinoma in Japanese patients with nonalcoholic fatty liver disease, alcoholic liver disease, and chronic liver disease of unknown etiology: report of the nationwide survey. J. Gastroenterol. 46, 1230–1237 (2011).

    Article  PubMed  Google Scholar 

  14. Marrero, J. A. et al. NAFLD may be a common underlying liver disease in patients with hepatocellular carcinoma in the United States. Hepatology 36, 1349–1354 (2002).

    Article  PubMed  Google Scholar 

  15. Lee, S. S. et al. Clinical features and outcome of cryptogenic hepatocellular carcinoma compared to those of viral and alcoholic hepatocellular carcinoma. BMC Cancer 13, 335 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ohata, K. et al. Hepatic steatosis is a risk factor for hepatocellular carcinoma in patients with chronic hepatitis C virus infection. Cancer 97, 3036–3043 (2003).

    Article  PubMed  Google Scholar 

  17. Pekow, J. R. et al. Hepatic steatosis is associated with increased frequency of hepatocellular carcinoma in patients with hepatitis C-related cirrhosis. Cancer 109, 2490–2496 (2007).

    Article  PubMed  Google Scholar 

  18. Tanaka, A. et al. Hepatic steatosis as a possible risk factor for the development of hepatocellular carcinoma after eradication of hepatitis C virus with antiviral therapy in patients with chronic hepatitis C. World J. Gastroenterol. 13, 5180–5187 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Saini, H. K., Elimban, V., Ozcelikay, A. T. & Dhalla, N. S. Mechanisms of cardiodepression by an Na+-H+ exchange inhibitor methyl-N-isobutyl amiloride (MIA) on the heart: lack of beneficial effects in ischemia-reperfusion injury. Can. J. Physiol. Pharmacol. 85, 67–78 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Yu, M. W. et al. Body-mass index and progression of hepatitis B: a population-based cohort study in men. J. Clin. Oncology 26, 5576–5582 (2008).

    Article  Google Scholar 

  21. Machado, M. V., Oliveira, A. G. & Cortez-Pinto, H. Hepatic steatosis in hepatitis B virus infected patients: meta-analysis of risk factors and comparison with hepatitis C infected patients. J. Gastroenterol. Hepatol. 26, 1361–1367 (2011).

    PubMed  Google Scholar 

  22. Kawamura, Y. et al. Large-scale long-term follow-up study of Japanese patients with non-alcoholic fatty liver disease for the onset of hepatocellular carcinoma. Am. J. Gastroenterol. 107, 253–261 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Hashimoto, E. et al. Hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. J. Gastroenterol. 44 (Suppl. 19), 89–95 (2009).

    Article  PubMed  Google Scholar 

  24. White, D. L., Kanwal, F. & El-Serag, H. B. Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review. Clin. Gastroenterol. Hepatol. 10, 1342–1359 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Guzman, G. et al. Does nonalcoholic fatty liver disease predispose patients to hepatocellular carcinoma in the absence of cirrhosis? Arch. Pathol. Lab. Med. 132, 1761–1766 (2008).

    PubMed  Google Scholar 

  26. Paradis, V. et al. Hepatocellular carcinomas in patients with metabolic syndrome often develop without significant liver fibrosis: a pathological analysis. Hepatology 49, 851–859 (2009).

    Article  PubMed  Google Scholar 

  27. Arase, Y. et al. Difference in malignancies of chronic liver disease due to non-alcoholic fatty liver disease or hepatitis C in Japanese elderly patients. Hepatol. Res. 42, 264–272 (2012).

    Article  PubMed  Google Scholar 

  28. Bhala, N. et al. The natural history of nonalcoholic fatty liver disease with advanced fibrosis or cirrhosis: an international collaborative study. Hepatology 54, 1208–1216 (2011).

    Article  PubMed  Google Scholar 

  29. Ascha, M. S. et al. The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology 51, 1972–1978 (2010).

    Article  PubMed  Google Scholar 

  30. Sanyal, A. J. et al. Similarities and differences in outcomes of cirrhosis due to nonalcoholic steatohepatitis and hepatitis C. Hepatology 43, 682–689 (2006).

    Article  PubMed  Google Scholar 

  31. Yatsuji, S. et al. Clinical features and outcomes of cirrhosis due to non-alcoholic steatohepatitis compared with cirrhosis caused by chronic hepatitis C. J. Gastroenterol. Hepatol. 24, 248–254 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Duan, X. Y., Qiao, L. & Fan, J. G. Clinical features of nonalcoholic fatty liver disease-associated hepatocellular carcinoma. Hepatobiliary Pancreat. Dis. Int. 11, 18–27 (2012).

    Article  PubMed  Google Scholar 

  33. Reddy, S. K. et al. Outcomes of curative treatment for hepatocellular cancer in nonalcoholic steatohepatitis versus hepatitis C and alcoholic liver disease. Hepatology 55, 1809–1819 (2012).

    Article  PubMed  Google Scholar 

  34. Wakai, T. et al. Surgical outcomes for hepatocellular carcinoma in nonalcoholic fatty liver disease. J. Gastrointest. Surg. 15, 1450–1458 (2011).

    Article  PubMed  Google Scholar 

  35. Valenti, L., Dongiovanni, P., Ginanni Corradini, S., Burza, M. A. & Romeo, S. PNPLA3 I148M variant and hepatocellular carcinoma: A common genetic variant for a rare disease. Dig. Liver Dis. 45, 619–624 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40, 1461–1465 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hassan, M. M. et al. Genetic variation in the PNPLA3 gene and hepatocellular carcinoma in USA: Risk and prognosis prediction. Mol. Carcinog. http://dx.doi.org/10.1002/mc.22057.

  38. Larsson, S. C. & Wolk, A. Overweight, obesity and risk of liver cancer: a meta-analysis of cohort studies. Br. J. Cancer 97, 1005–1008 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Calle, E. E., Rodriguez, C., Walker-Thurmond, K. & Thun, M. J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U. S. adults. N. Engl. J. Med. 348, 1625–1638 (2003).

    Article  PubMed  Google Scholar 

  40. Nair, S. et al. Is obesity an independent risk factor for hepatocellular carcinoma in cirrhosis? Hepatology 36, 150–155 (2002).

    Article  PubMed  Google Scholar 

  41. Akiyama, T. et al. Body mass index is associated with age-at-onset of HCV-infected hepatocellular carcinoma patients. World J. Gastroenterol. 17, 914–921 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. N'Kontchou, G. et al. Risk factors for hepatocellular carcinoma in patients with alcoholic or viral C cirrhosis. Clin. Gastroenterol. Hepatol. 4, 1062–1068 (2006).

    Article  PubMed  Google Scholar 

  43. Chen, H. F., Chen, P. & Li, C. Y. Risk of malignant neoplasms of liver and biliary tract in diabetic patients with different age and sex stratifications. Hepatology 52, 155–163 (2010).

    Article  PubMed  Google Scholar 

  44. Koh, W. P., Wang, R., Jin, A., Yu, M. C. & Yuan, J. M. Diabetes mellitus and risk of hepatocellular carcinoma: findings from the Singapore Chinese Health Study. Br. J. Cancer 108, 1182–1188 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mittal, S. & El-Serag, H. B. Epidemiology of hepatocellular carcinoma: consider the population. J. Clin. Gastroenterol. 47 (Suppl.), S2–S6 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chen, C. L. et al. Metabolic factors and risk of hepatocellular carcinoma by chronic hepatitis B/C infection: a follow-up study in Taiwan. Gastroenterology 135, 111–121 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Hassan, M. M. et al. Association of diabetes duration and diabetes treatment with the risk of hepatocellular carcinoma. Cancer 116, 1938–1946 (2010).

    Article  PubMed  Google Scholar 

  48. Lai, S. W. et al. Risk of hepatocellular carcinoma in diabetic patients and risk reduction associated with anti-diabetic therapy: a population-based cohort study. Am. J. Gastroenterol. 107, 46–52 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Donadon, V., Balbi, M., Mas, M. D., Casarin, P. & Zanette, G. Metformin and reduced risk of hepatocellular carcinoma in diabetic patients with chronic liver disease. Liver Int. 30, 750–758 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Nkontchou, G. et al. Impact of metformin on the prognosis of cirrhosis induced by viral hepatitis C in diabetic patients. J. Cin. Endocrinol. Metab. 96, 2601–2608 (2011).

    Article  CAS  Google Scholar 

  51. Choi, Y. K. & Park, K. G. Metabolic roles of AMPK and metformin in cancer cells. Mol. Cells http://dx.doi.org/10.1007/s10059-013-0169-8.

  52. Wang, H. et al. Prognostic significance of AMPK activation and therapeutic effects of metformin in hepatocellular carcinoma. Clin. Cancer Res. http://dx.doi.org/10.1158/1078-0432CCR-13-0203.

  53. Lee, C. W. et al. AMPK promotes p53 acetylation via phosphorylation and inactivation of SIRT1 in liver cancer cells. Cancer Res. 72, 4394–4404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Napetschnig, J. & Wu, H. Molecular basis of NF-κB signaling. Annu. Rev. Biophys 42, 443–468 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Baker, R. G., Hayden, M. S. & Ghosh, S. NF-κB, inflammation, and metabolic disease. Cell Metab. 13, 11–22 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dela Pena, A. et al. NF-κB activation, rather than TNF, mediates hepatic inflammation in a murine dietary model of steatohepatitis. Gastroenterology 129, 1663–1674 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Romics, L., Jr et al. Diverse regulation of NF-κB and peroxisome proliferator-activated receptors in murine nonalcoholic fatty liver. Hepatology 40, 376–385 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Locatelli, I., Sutti, S., Vacchiano, M., Bozzola, C. & Albano, E. NF-κB1 deficiency stimulates the progression of non-alcoholic steatohepatitis (NASH) in mice by promoting NKT-cell-mediated responses. Clin. Sci. (Lond.) 124, 279–287 (2013).

    Article  CAS  Google Scholar 

  59. Syn, W. K. et al. Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease. Hepatology 51, 1998–2007 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Maeda, S., Kamata, H., Luo, J. L., Leffert, H. & Karin, M. IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121, 977–990 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Pikarsky, E. et al. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461–466 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Karin, M. NF-κB as a critical link between inflammation and cancer. Cold Spring Harb. Perspect. Biol. 1, a000141 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jung, Y. et al. Signals from dying hepatocytes trigger growth of liver progenitors. Gut 59, 655–665 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Postic, C. et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic β cell-specific gene knock-outs using Cre recombinase. J. Biol. Chem. 274, 305–315 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Michelotti, G. A. et al. Smoothened is a master regulator of adult liver repair. J. Clin. Invest. 123, 2380–2394 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Luedde, T. et al. Deletion of NEMO/IKKγ in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 11, 119–132 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Beraza, N. et al. Hepatocyte-specific NEMO deletion promotes NK/NKT cell- and TRAIL-dependent liver damage. J. Exp. Med. 206, 1727–1737 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Malato, Y. et al. NF-κB essential modifier is required for hepatocyte proliferation and the oval cell reaction after partial hepatectomy in mice. Gastroenterology 143, 1597–1608 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Bettermann, K. et al. TAK1 suppresses a NEMO-dependent but NF-κB-independent pathway to liver cancer. Cancer Cell 17, 481–496 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Maeda, T., Hobbs, R. M. & Pandolfi, P. P. The transcription factor Pokemon: a new key player in cancer pathogenesis. Cancer Res. 65, 8575–8578 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Lin, C. C. et al. The silencing of Pokemon attenuates the proliferation of hepatocellular carcinoma cells in vitro and in vivo by inhibiting the PI3K/Akt pathway. PLoS ONE 7, e51916 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, N. N., Sun, Q. S., Chen, Z., Liu, F. & Jiang, Y. Y. Homeostatic regulatory role of Pokemon in NF-κB signaling: stimulating both p65 and IκBα expression in human hepatocellular carcinoma cells. Mol. Cell. Biochem. 372, 57–64 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Lee, J. W. et al. PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene 24, 1477–1480 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Kudo, Y. et al. Altered composition of fatty acids exacerbates hepatotumorigenesis during activation of the phosphatidylinositol 3-kinase pathway. J. Hepatol. 55, 1400–1408 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Leavens, K. F., Easton, R. M., Shulman, G. I., Previs, S. F. & Birnbaum, M. J. Akt2 is required for hepatic lipid accumulation in models of insulin resistance. Cell Metab. 10, 405–418 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3, 4, 5-trisphosphate. J. Biol Chem. 273, 13375–13378 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Stiles, B. et al. Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc. Natl Acad. Sci. USA 101, 2082–2087 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Watanabe, S., Horie, Y. & Suzuki, A. Hepatocyte-specific Pten-deficient mice as a novel model for nonalcoholic steatohepatitis and hepatocellular carcinoma. Hepatol. Res. 33, 161–166 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Hu, T. H. et al. Expression and prognostic role of tumor suppressor gene PTEN/MMAC1/TEP1 in hepatocellular carcinoma. Cancer 97, 1929–1940 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Podsypanina, K. et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc. Natl Acad. Sci. USA 96, 1563–1568 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Horie, Y. et al. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J. Clin. Invest. 113, 1774–1783 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. He, L. et al. The critical role of AKT2 in hepatic steatosis induced by PTEN loss. Am. J. Pathol. 176, 2302–2308 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Vinciguerra, M. et al. Unsaturated fatty acids promote hepatoma proliferation and progression through downregulation of the tumor suppressor PTEN. J. Hepatol. 50, 1132–1141 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Vinciguerra, M. et al. Unsaturated fatty acids inhibit the expression of tumor suppressor phosphatase and tensin homolog (PTEN) via microRNA-21 up-regulation in hepatocytes. Hepatology 49, 1176–1184 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. He, X. C. et al. PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nat. Genet. 39, 189–198 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hill, R. & Wu, H. PTEN, stem cells, and cancer stem cells. J. Biol Chem. 284, 11755–11759 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang, S. et al. Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation. Proc. Natl Acad. Sci. USA 103, 1480–1485 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Trotman, L. C. et al. Pten dose dictates cancer progression in the prostate. PLoS Biol. 1, E59 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Salmena, L., Carracedo, A. & Pandolfi, P. P. Tenets of PTEN tumor suppression. Cell 133, 403–414 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Lu, S. C. & Mato, J. M. S-Adenosylmethionine in cell growth, apoptosis and liver cancer. J. Gastroenterol. Hepatol. 23 (Suppl. 1), S73–S77 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Johnson, A. R. et al. Deletion of murine choline dehydrogenase results in diminished sperm motility. FASEB J. 24, 2752–2761 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lu, S. C. et al. Methionine adenosyltransferase 1A knockout mice are predisposed to liver injury and exhibit increased expression of genes involved in proliferation. Proc. Natl Acad. Sci. USA 98, 5560–5565 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Martinez-Chantar, M. L. et al. Spontaneous oxidative stress and liver tumors in mice lacking methionine adenosyltransferase 1A. FASEB J. 16, 1292–1294 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Teng, Y. W., Mehedint, M. G., Garrow, T. A. & Zeisel, S. H. Deletion of betaine-homocysteine S-methyltransferase in mice perturbs choline and 1-carbon metabolism, resulting in fatty liver and hepatocellular carcinomas. J. Biol. Chem. 286, 36258–36267 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lu, S. C. & Mato, J. M. S-adenosylmethionine in liver health, injury, and cancer. Physiol. Rev. 92, 1515–1542 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Frau, M., Feo, F. & Pascale, R. M. Pleiotropic effects of methionine adenosyltransferases deregulation as determinants of liver cancer progression and prognosis. J. Hepatol. 59, 830–841 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Liu, Q. et al. The X protein of hepatitis B virus inhibits apoptosis in hepatoma cells through enhancing the methionine adenosyltransferase 2A gene expression and reducing S-adenosylmethionine production. J. Biol Chem. 286, 17168–17180 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Avila, M. A. et al. Reduced mRNA abundance of the main enzymes involved in methionine metabolism in human liver cirrhosis and hepatocellular carcinoma. J. Hepatol. 33, 907–914 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Cai, J., Sun, W. M., Hwang, J. J., Stain, S. C. & Lu, S. C. Changes in S-adenosylmethionine synthetase in human liver cancer: molecular characterization and significance. Hepatology 24, 1090–1097 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Yang, H. et al. MicroRNAs regulate methionine adenosyltransferase 1A expression in hepatocellular carcinoma. J. Clin. Invest. 123, 285–298 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Cano, A. et al. Methionine adenosyltransferase 1A gene deletion disrupts hepatic very low-density lipoprotein assembly in mice. Hepatology 54, 1975–1986 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Sánchez-Quiles, V. et al. Prohibitin-1 deficiency promotes inflammation and increases sensitivity to liver injury. J. Proteomics 75, 5783–5792 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Ko, K. S. et al. Liver-specific deletion of prohibitin 1 results in spontaneous liver injury, fibrosis, and hepatocellular carcinoma in mice. Hepatology 52, 2096–2108 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Santamaria, E. et al. Functional proteomics of nonalcoholic steatohepatitis: mitochondrial proteins as targets of S-adenosylmethionine. Proc. Natl Acad. Sci. USA 100, 3065–3070 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Liao, Y. J. et al. Characterization of a glycine N-methyltransferase gene knockout mouse model for hepatocellular carcinoma: implications of the gender disparity in liver cancer susceptibility. Int. J. Cancer 124, 816–826 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Martinez-Chantar, M. L. et al. Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice. Hepatology 47, 1191–1199 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Martinez-Lopez, N. et al. Hepatoma cells from mice deficient in glycine N-methyltransferase have increased RAS signaling and activation of liver kinase B1. Gastroenterology 143, 787–798 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Huidobro, C. et al. A DNA methylation signature associated with the epigenetic repression of glycine N-methyltransferase in human hepatocellular carcinoma. J. Mol. Med. (Berl.) 91, 939–950 (2013).

    Article  CAS  Google Scholar 

  109. Ceccarelli, S., Panera, N., Gnani, D. & Nobili, V. Dual role of microRNAs in NAFLD. Int. J. Mol. Sci. 14, 8437–8455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chang, J. et al. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol. 1, 106–113 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Rottiers, V. & Naar, A. M. MicroRNAs in metabolism and metabolic disorders. Nat. Rev. Mol. Cell Biol. 13, 239–250 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Esau, C. et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 3, 87–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Tsai, W. C. et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J. Clin. Invest. 122, 2884–2897 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Burchard, J. et al. microRNA-122 as a regulator of mitochondrial metabolic gene network in hepatocellular carcinoma. Mol. Syst. Biol. 6, 402 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Meng, F. et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133, 647–658 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Bao, L. et al. MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathways. Cancer Lett. 337, 226–236 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Wei, J., Feng, L., Li, Z., Xu, G. & Fan, X. MicroRNA-21 activates hepatic stellate cells via PTEN/Akt signaling. Biomed. Pharmacother. 67, 387–392 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Wang, C., Bian, Z., Wei, D. & Zhang, J. G. miR-29b regulates migration of human breast cancer cells. Mol. Cell. Biochem. 352, 197–207 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Tumaneng, K. et al. YAP mediates crosstalk between the Hippo and PI(3)K-TOR pathways by suppressing PTEN via miR-29. Nat. Cell Biol. 14, 1322–1329 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kong, G. et al. Upregulated microRNA-29a by hepatitis B virus X protein enhances hepatoma cell migration by targeting PTEN in cell culture model. PLoS ONE 6, e19518 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yau, W. L. et al. Over-expression of miR-106b promotes cell migration and metastasis in hepatocellular carcinoma by activating epithelial-mesenchymal transition process. PLoS ONE 8, e57882 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Poliseno, L. et al. Identification of the miR-106b25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Science Signal. 3, ra29 (2010).

    Article  CAS  Google Scholar 

  123. Petrocca, F., Vecchione, A. & Croce, C. M. Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor β signaling. Cancer Res. 68, 8191–8194 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Cai, K., Wang, Y. & Bao, X. MiR-106b promotes cell proliferation via targeting RB in laryngeal carcinoma. J. Exp. Clin. Cancer Res. 30, 73 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Meng, F. et al. Functional analysis of microRNAs in human hepatocellular cancer stem cells. J. Cell. Mol. Med. 16, 160–173 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Wu, K. et al. Hepatic transforming growth factor β gives rise to tumor-initiating cells and promotes liver cancer development. Hepatology 56, 2255–2267 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Yang, H., Fang, F., Chang, R. & Yang, L. MicroRNA-140-5p suppresses tumor growth and metastasis by targeting transforming growth factor β receptor 1 and fibroblast growth factor 9 in hepatocellular carcinoma. Hepatology 58, 205–217 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Ding, J. et al. Genome-wide screening revealed that miR-195 targets the TNF-α/NF-κB pathway by downregulating IKKα and TAB3 in hepatocellular carcinoma. Hepatology 58, 654–666 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Lee, J. et al. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J. Biol Chem. 285, 12604–12611 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Castro, R. E. et al. miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease. J. Hepatol. 58, 119–125 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Lee, J. S. et al. Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat. Genet. 36, 1306–1311 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Coulouarn, C., Factor, V. M., Conner, E. A. & Thorgeirsson, S. S. Genomic modeling of tumor onset and progression in a mouse model of aggressive human liver cancer. Carcinogenesis 32, 1434–1440 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Roskams, T. et al. Oxidative stress and oval cell accumulation in mice and humans with alcoholic and nonalcoholic fatty liver disease. Am. J. Pathol. 163, 1301–1311 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yang, S. et al. Oval cells compensate for damage and replicative senescence of mature hepatocytes in mice with fatty liver disease. Hepatology 39, 403–411 (2004).

    Article  PubMed  Google Scholar 

  135. Torbenson, M. et al. STAT-3 overexpression and p21 up-regulation accompany impaired regeneration of fatty livers. Am. J. Pathol. 161, 155–161 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Richardson, M. M. et al. Progressive fibrosis in nonalcoholic steatohepatitis: association with altered regeneration and a ductular reaction. Gastroenterology 133, 80–90 (2007).

    Article  PubMed  Google Scholar 

  137. Fleig, S. V. et al. Hepatic accumulation of Hedgehog-reactive progenitors increases with severity of fatty liver damage in mice. Lab. Invest. 87, 1227–1239 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Tolosa, L. et al. Steatotic liver: a suitable source for the isolation of hepatic progenitor cells. Liver Int. 31, 1231–1238 (2011).

    Article  PubMed  Google Scholar 

  139. Budhu, A. et al. Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology 47, 897–907 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Qu, K. Z., Zhang, K., Li, H., Afdhal, N. H. & Albitar, M. Circulating microRNAs as biomarkers for hepatocellular carcinoma. J. Clin. Gastroenterol. 45, 355–360 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Yamamoto, Y. et al. MicroRNA-500 as a potential diagnostic marker for hepatocellular carcinoma. Biomarkers 14, 529–538 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Murakami, Y. et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 25, 2537–2545 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Schwarz, M. et al. Role of receptors in human and rodent hepatocarcinogenesis. Mutat. Res. 333, 69–79 (1995).

    Article  CAS  PubMed  Google Scholar 

  144. Unger, C. et al. Wild-type function of the p53 tumor suppressor protein is not required for apoptosis of mouse hepatoma cells. Cell Death Diff. 5, 87–95 (1998).

    Article  CAS  Google Scholar 

  145. Gonçalves, P. L. et al. Etiology of liver cirrhosis in Brazil: chronic alcoholism and hepatitis viruses in liver cirrhosis diagnosed in the state of Espfrito Santo. Clinics (Sao Paulo) 68, 291–295 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Anna Mae Diehl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michelotti, G., Machado, M. & Diehl, A. NAFLD, NASH and liver cancer. Nat Rev Gastroenterol Hepatol 10, 656–665 (2013). https://doi.org/10.1038/nrgastro.2013.183

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2013.183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing