Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting iron metabolism in drug discovery and delivery

Key Points

  • Iron metabolism is a tightly regulated physiological process that has relatively low redundancy, and its deregulation often leads to iron deficiency or iron overload.

  • Iron deficiency and iron overload are historically associated with erythroid disorders; however, deregulated iron metabolism is also implicated in numerous ageing-related, non-haematological disorders, including neurodegenerative disorders, atherosclerosis and cancer.

  • Intracellular iron is directly involved in the formation of reactive oxygen species, which can cause cellular oxidative damage. Reactive oxygen species are also important for ferroptosis, a form of non-apoptotic cell death.

  • The internalization of iron by macrophages can modulate macrophage activity towards a pro-inflammatory phenotype, which may also depend on the pathway of iron intake.

  • Agents that interfere with key regulators of iron metabolism and cellular iron trafficking represent a promising new class of therapeutic agents for various diseases because these agents exploit pathological pathways that are complementary to those targeted by existing treatments.

  • Targeting therapeutics to diseased tissues that express high levels of transferrin receptor is a strategy that is used by several agents currently in clinical development, and extending this strategy towards other iron metabolism-associated cellular transporters may be advantageous.

Abstract

Iron fulfils a central role in many essential biochemical processes in human physiology; thus, proper processing of iron is crucial. Although iron metabolism is subject to relatively strict physiological control, numerous disorders, such as cancer and neurodegenerative diseases, have recently been linked to deregulated iron homeostasis. Consequently, iron metabolism constitutes a promising and largely unexploited therapeutic target for the development of new pharmacological treatments for these diseases. Several iron metabolism-targeted therapies are already under clinical evaluation for haematological disorders, and these and newly developed therapeutic agents are likely to have substantial benefit in the clinical management of iron metabolism-associated diseases, for which few efficacious treatments are currently available.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Systemic iron metabolism.
Figure 2: Regulation of hepcidin expression in hepatocytes.
Figure 3: Cellular iron trafficking pathways.
Figure 4: Up- and downregulation of several key players in non-haematological pathologies.
Figure 5: Proposed mechanisms for targeted drug delivery exploiting iron metabolism-associated cellular targets.

Similar content being viewed by others

References

  1. Rouault, T. A. Iron-sulfur proteins hiding in plain sight. Nat. Chem. Biol. 11, 442–445 (2015).

    CAS  PubMed  Google Scholar 

  2. Hohenberger, J., Ray, K. & Meyer, K. The biology and chemistry of high-valent iron–oxo and iron–nitrido complexes. Nat. Commun. 3, 720 (2012).

    PubMed  Google Scholar 

  3. Ganz, T. Systemic iron homeostasis. Physiol. Rev. 93, 1721–1741 (2013).

    CAS  PubMed  Google Scholar 

  4. Camaschella, C. Iron-deficiency anemia. N. Engl. J. Med. 372, 1832–1843 (2015).

    PubMed  Google Scholar 

  5. Rivella, S. β-Thalassemias: paradigmatic diseases for scientific discoveries and development of innovative therapies. Haematologica 100, 418–430 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Stadtman, E. R. Protein oxidation and aging. Science 257, 1220–1224 (1992).

    CAS  PubMed  Google Scholar 

  7. Fenton, H. J. H. Oxidation of tartaric acid in presence of iron. J. Chem. Soc. Trans. 65, 899–910 (1894).

    CAS  Google Scholar 

  8. Haber, F. & Weiss, J. Über die Katalyse des Hydroperoxydes. Naturwissenschaften 20, 948–950 (in German) (1932).

    CAS  Google Scholar 

  9. Park, C. H., Valore, E. V., Waring, A. J. & Ganz, T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J. Biol. Chem. 276, 7806–7810 (2001).

    CAS  PubMed  Google Scholar 

  10. Krause, A. et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. 480, 147–150 (2000). References 9 and 10 describe for the first time the isolation and characterization of hepcidin, which was then shown to have moderate antimicrobial activity.

    CAS  PubMed  Google Scholar 

  11. Nicolas, G. et al. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc. Natl Acad. Sci. USA 98, 8780–8785 (2001). The first study to demonstrate the role of hepcidin as the master regulator of iron metabolism.

    CAS  PubMed  Google Scholar 

  12. Donovan, A. et al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403, 776–781 (2000).

    CAS  PubMed  Google Scholar 

  13. Nemeth, E. et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093 (2004). This study demonstrates that hepcidin regulates systemic iron homeostasis by binding ferroportin and inducing its internalization, thereby blocking the cellular egress of iron.

    CAS  PubMed  Google Scholar 

  14. McKie, A. T. et al. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol. Cell 5, 299–309 (2000).

    CAS  PubMed  Google Scholar 

  15. Donovan, A. et al. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 1, 191–200 (2005).

    CAS  PubMed  Google Scholar 

  16. Abboud, S. & Haile, D. J. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J. Biol. Chem. 275, 19906–19912 (2000). References 12, 14 and 16 provide the first reports of the isolation and characterization of ferroportin, demonstrating its role in cellular iron export.

    CAS  PubMed  Google Scholar 

  17. Aisen, P., Leibman, A. & Zweier, J. Stoichiometric and site characteristics of the binding of iron to human transferrin. J. Biol. Chem. 253, 1930–1937 (1978).

    CAS  PubMed  Google Scholar 

  18. Fotticchia, I. et al. Energetics of ligand–receptor binding affinity on endothelial cells: an in vitro model. Colloids Surf. B Biointerfaces 144, 250–256 (2016).

    CAS  PubMed  Google Scholar 

  19. Dautry-Varsat, A., Ciechanover, A. & Lodish, H. F. pH and the recycling of transferrin during receptor-mediated endocytosis. Proc. Natl Acad. Sci. USA 80, 2258–2262 (1983).

    CAS  PubMed  Google Scholar 

  20. Trinder, D., Zak, O. & Aisen, P. Transferrin receptor-independent uptake of differic transferrin by human hepatoma cells with antisense inhibition of receptor expression. Hepatology 23, 1512–1520 (1996).

    CAS  PubMed  Google Scholar 

  21. Gunshin, H. et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388, 482–488 (1997). This study identifies DMT1, which was then shown to be involved in the transport of bivalent cations, in particular Fe(II).

    CAS  PubMed  Google Scholar 

  22. Liuzzi, J. P., Aydemir, F., Nam, H., Knutson, M. D. & Cousins, R. J. Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc. Natl Acad. Sci. USA 103, 13612–13617 (2006).

    CAS  PubMed  Google Scholar 

  23. Wang, C.-Y. et al. ZIP8 is an iron and zinc transporter whose cell-surface expression is up-regulated by cellular iron loading. J. Biol. Chem. 287, 34032–34043 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fleming, M. D. et al. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat. Genet. 16, 383–386 (1997).

    CAS  PubMed  Google Scholar 

  25. Fleming, M. D. et al. Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc. Natl Acad. Sci. USA 95, 1148–1153 (1998).

    CAS  PubMed  Google Scholar 

  26. Shawki, A. et al. Intestinal DMT1 is critical for iron absorption in the mouse but is not required for the absorption of copper or manganese. Am. J. Physiol. Gastrointest. Liver Physiol. 309, G635–G647 (2015).

    PubMed  PubMed Central  Google Scholar 

  27. Mims, M. P. et al. Identification of a human mutation of DMT1 in a patient with microcytic anemia and iron overload. Blood 105, 1337–1342 (2005).

    CAS  PubMed  Google Scholar 

  28. Canonne-Hergaux, F., Zhang, A.-S., Ponka, P. & Gros, P. Characterization of the iron transporter DMT1 (NRAMP2/DCT1) in red blood cells of normal and anemic mk/mk mice. Blood 98, 3823–3830 (2001).

    CAS  PubMed  Google Scholar 

  29. Jenkitkasemwong, S. et al. SLC39A14 is required for the development of hepatocellular iron overload in murine models of hereditary hemochromatosis. Cell Metab. 22, 138–150 (2015). This study identifies ZIP14 as a key cellular Fe(II) importer that is specifically involved in iron uptake in tissues typically affected by iron overload.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. McKie, A. T. et al. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291, 1755–1759 (2001).

    CAS  PubMed  Google Scholar 

  31. Ohgami, R. S. et al. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat. Genet. 37, 1264–1269 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ohgami, R. S., Campagna, D. R., McDonald, A. & Fleming, M. D. The Steap proteins are metalloreductases. Blood 108, 1388–1394 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Tripathi, A. K. et al. Prion protein functions as a ferrireductase partner for ZIP14 and DMT1. Free Radic. Biol. Med. 84, 322–330 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Singh, A. et al. Prion protein regulates iron transport by functioning as a ferrireductase. J. Alzheimers Dis. 35, 541–552 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kristiansen, M. et al. Identification of the haemoglobin scavenger receptor. Nature 409, 198–201 (2001).

    CAS  PubMed  Google Scholar 

  36. Andersen, C. B. F. et al. Structure of the haptoglobin–haemoglobin complex. Nature 489, 456–459 (2012). References 35 and 36 describe the identification of the macrophage-associated haemoglobin receptor CD163 and the structural characterization of the haptoglobin–haemoglobin complex that is bound and internalized by CD163.

    CAS  PubMed  Google Scholar 

  37. Hvidberg, V. et al. Identification of the receptor scavenging hemopexin–heme complexes. Blood 106, 2572–2579 (2005).

    CAS  PubMed  Google Scholar 

  38. Rajagopal, A. et al. Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins. Nature 453, 1127–1131 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Duffy, S. P. et al. The Fowler syndrome-associated protein FLVCR2 is an importer of heme. Mol. Cell. Biol. 30, 5318–5324 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. White, C. et al. HRG1 is essential for heme transport from the phagolysosome of macrophages during erythrophagocytosis. Cell Metab. 17, 261–270 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, J. Y. et al. Scara5 is a ferritin receptor mediating non-transferrin iron delivery. Dev. Cell 16, 35–46 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, L. et al. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proc. Natl Acad. Sci. USA 107, 3505–3510 (2010).

    CAS  PubMed  Google Scholar 

  43. Moss, D., Powell, L. W., Arosio, P. & Halliday, J. W. Characterization of the ferritin receptors of human T lymphoid (MOLT-4) cells. J. Lab. Clin. Med. 119, 273–279 (1992).

    CAS  PubMed  Google Scholar 

  44. Chen, T. T. et al. TIM-2 is expressed on B cells and in liver and kidney and is a receptor for H-ferritin endocytosis. J. Exp. Med. 202, 955–965 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Shaw, G. C. et al. Mitoferrin is essential for erythroid iron assimilation. Nature 440, 96–100 (2006).

    CAS  PubMed  Google Scholar 

  46. Bou-Abdallah, F. The iron redox and hydrolysis chemistry of the ferritins. Biochim. Biophys. Acta 1800, 719–731 (2010).

    CAS  PubMed  Google Scholar 

  47. Leibold, E. A. & Munro, H. N. Cytoplasmic protein binds in vitro to a highly conserved sequence in the 5′ untranslated region of ferritin heavy- and light-subunit mRNAs. Proc. Natl Acad. Sci. USA 85, 2171–2175 (1988).

    CAS  PubMed  Google Scholar 

  48. Rouault, T. A., Hentze, M. W., Caughman, S. W., Harford, J. B. & Klausner, R. D. Binding of a cytosolic protein to the iron-responsive element of human ferritin messenger RNA. Science 241, 1207–1210 (1988).

    CAS  PubMed  Google Scholar 

  49. Vashchenko, G. & MacGillivray, R. T. A. Multi-copper oxidases and human iron metabolism. Nutrients 5, 2289–2313 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ghosh, S., Hevi, S. & Chuck, S. L. Regulated secretion of glycosylated human ferritin from hepatocytes. Blood 103, 2369–2376 (2004).

    CAS  PubMed  Google Scholar 

  51. Cohen, L. A. et al. Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway. Blood 116, 1574–1584 (2010).

    CAS  PubMed  Google Scholar 

  52. Mancias, J. D., Wang, X., Gygi, S. P., Harper, J. W. & Kimmelman, A. C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509, 105–109 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Keel, S. B. et al. A heme export protein is required for red blood cell differentiation and iron homeostasis. Science 319, 825–828 (2008).

    CAS  PubMed  Google Scholar 

  54. Taher, A. T. et al. Overview on practices in thalassemia intermedia management aiming for lowering complication rates across a region of endemicity: the OPTIMAL CARE study. Blood 115, 1886–1892 (2010).

    CAS  PubMed  Google Scholar 

  55. Finberg, K. E. et al. Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA). Nat. Genet. 40, 569–571 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Gardenghi, S. et al. Distinct roles for hepcidin and interleukin-6 in the recovery from anemia in mice injected with heat-killed Brucella abortus. Blood 123, 1137–1145 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Canali, S. et al. Activin B induces noncanonical SMAD1/5/8 signaling via BMP type I receptors in hepatocytes: evidence for a role in hepcidin induction by inflammation in male mice. Endocrinology 157, 1146–1162 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Weiss, G. & Schett, G. Anaemia in inflammatory rheumatic diseases. Nat. Rev. Rheumatol. 9, 205–215 (2013).

    CAS  PubMed  Google Scholar 

  59. Eaton, J. W. & Qian, M. Molecular bases of cellular iron toxicity. Free Radic. Biol. Med. 32, 833–840 (2002).

    CAS  PubMed  Google Scholar 

  60. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012). This study is the first to describe ferroptosis, demonstrating the dependence of this distinct form of cell death on the availability of intracellular iron.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Skouta, R. et al. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J. Am. Chem. Soc. 136, 4551–4556 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kang, Y., Tiziani, S., Park, G., Kaul, M. & Paternostro, G. Cellular protection using Flt3 and PI3Kα inhibitors demonstrates multiple mechanisms of oxidative glutamate toxicity. Nat. Commun. 5, 3672 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

    CAS  PubMed  Google Scholar 

  64. Linkermann, A. et al. Synchronized renal tubular cell death involves ferroptosis. Proc. Natl Acad. Sci. USA 111, 16836–16841 (2014).

    CAS  PubMed  Google Scholar 

  65. Jiang, L. et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520, 57–62 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Sun, X. et al. HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene 34, 5617–5625 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Dixon, S. J. & Stockwell, B. R. The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 10, 9–17 (2014).

    CAS  PubMed  Google Scholar 

  69. Sabharwal, S. S. & Schumacker, P. T. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel? Nat. Rev. Cancer 14, 709–721 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Conrad, M., Angeli, J. P. F., Vandenabeele, P. & Stockwell, B. R. Regulated necrosis: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 15, 348–366 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Chow, A. et al. CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat. Med. 19, 429–436 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ramos, P. et al. Macrophages support pathological erythropoiesis in polycythemia vera and β-thalassemia. Nat. Med. 19, 437–445 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. She, H. et al. Iron activates NF-κB in Kupffer cells. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G719–G726 (2002).

    CAS  PubMed  Google Scholar 

  74. Zhang, Z. et al. Ferroportin1 deficiency in mouse macrophages impairs iron homeostasis and inflammatory responses. Blood 118, 1912–1922 (2011).

    CAS  PubMed  Google Scholar 

  75. Zanganeh, S. et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol. 11, 986–994 (2016). This study demonstrates the capacity of iron to modulate the activity of intratumoural macrophages to an antitumoural phenotype, which could be exploited as an anticancer strategy.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sindrilaru, A. et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J. Clin. Invest. 121, 985–997 (2011). This study is the first to directly link the inflammatory phenotype of macrophages to their iron load.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Vinchi, F. et al. Hemopexin therapy reverts heme-induced proinflammatory phenotypic switching of macrophages in a mouse model of sickle cell disease. Blood 127, 473–486 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Jabara, H. H. et al. A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency. Nat. Genet. 48, 74–78 (2016).

    CAS  PubMed  Google Scholar 

  79. Wandersman, C. & Delepelaire, P. Bacterial iron sources: from siderophores to hemophores. Annu. Rev. Microbiol. 58, 611–647 (2004).

    CAS  PubMed  Google Scholar 

  80. Bao, G. et al. Iron traffics in circulation bound to a siderocalin (Ngal)–catechol complex. Nat. Chem. Biol. 6, 602–609 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Flo, T. H. et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432, 917–921 (2004).

    CAS  PubMed  Google Scholar 

  82. Arezes, J. et al. Hepcidin-induced hypoferremia is a critical host defense mechanism against the siderophilic bacterium Vibrio vulnificus. Cell Host Microbe 17, 47–57 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen, S. et al. Transforming growth factor β1 (TGF-β1) activates hepcidin mRNA expression in hepatocytes. J. Biol. Chem. 291, 13160–13174 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Guida, C. et al. A novel inflammatory pathway mediating rapid hepcidin-independent hypoferremia. Blood 125, 2265–2275 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Piskounova, E. et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527, 186–191 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Torti, S. V. & Torti, F. M. Iron and cancer: more ore to be mined. Nat. Rev. Cancer 13, 342–355 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Bystrom, L. M. & Rivella, S. Cancer cells with irons in the fire. Free Radic. Biol. Med. 79, 337–342 (2015).

    CAS  PubMed  Google Scholar 

  88. Kim, K.-S., Son, H.-G., Hong, N.-S. & Lee, D.-H. Associations of serum ferritin and transferrin saturation with all-cause, cancer, and cardiovascular disease mortality: Third National Health and Nutrition Examination Survey follow-up study. J. Prev. Med. Public Health 45, 196–203 (2012).

    PubMed  PubMed Central  Google Scholar 

  89. Ashmore, J. H., Rogers, C. J., Kelleher, S. L., Lesko, S. M. & Hartman, T. J. Dietary iron and colorectal cancer risk: a review of human population studies. Crit. Rev. Food Sci. Nutr. 56, 1012–1020 (2016).

    CAS  PubMed  Google Scholar 

  90. Miller, L. D. et al. An iron regulatory gene signature predicts outcome in breast cancer. Cancer Res. 71, 6728–6737 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Pinnix, Z. K. et al. Ferroportin and iron regulation in breast cancer progression and prognosis. Sci. Transl Med. 2, 43ra56 (2010). This study demonstrates an inverse relationship between ferroportin expression and breast cancer progression in vitro, in vivo and in four-patient cohorts.

    PubMed  PubMed Central  Google Scholar 

  92. Habashy, H. O. et al. Transferrin receptor (CD71) is a marker of poor prognosis in breast cancer and can predict response to tamoxifen. Breast Cancer Res. Treat. 119, 283–293 (2009).

    PubMed  Google Scholar 

  93. Jeong, S. M., Hwang, S. & Seong, R. H. Transferrin receptor regulates pancreatic cancer growth by modulating mitochondrial respiration and ROS generation. Biochem. Biophys. Res. Commun. 471, 373–379 (2016).

    CAS  PubMed  Google Scholar 

  94. Schonberg, D. L. et al. Preferential iron trafficking characterizes glioblastoma stem-like cells. Cancer Cell 28, 441–455 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Högemann-Savellano, D. et al. The transferrin receptor: a potential molecular imaging marker for human cancer. Neoplasia 5, 495–506 (2003).

    PubMed  PubMed Central  Google Scholar 

  96. Isobe, T. et al. Human STEAP3 maintains tumor growth under hypoferric condition. Exp. Cell Res. 317, 2582–2591 (2011).

    CAS  PubMed  Google Scholar 

  97. Savci-Heijink, C. D., Halfwerk, H., Koster, J. & Vijver, M. J. A novel gene expression signature for bone metastasis in breast carcinomas. Breast Cancer Res. Treat. 156, 249–259 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Tesfay, L. et al. Hepcidin regulation in prostate and its disruption in prostate cancer. Cancer Res. 75, 2254–2263 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen, Y. et al. Disordered signaling governing ferroportin transcription favors breast cancer growth. Cell. Signal. 27, 168–176 (2015).

    CAS  PubMed  Google Scholar 

  100. Zhang, S. et al. Disordered hepcidin–ferroportin signaling promotes breast cancer growth. Cell. Signal. 26, 2539–2550 (2014).

    CAS  PubMed  Google Scholar 

  101. Marques, O. et al. Local iron homeostasis in the breast ductal carcinoma microenvironment. BMC Cancer 16, 187 (2016).

    PubMed  PubMed Central  Google Scholar 

  102. Sanders, A. J. et al. Genetic upregulation of matriptase-2 reduces the aggressiveness of prostate cancer cells in vitro and in vivo and affects FAK and paxillin localisation. J. Cell. Physiol. 216, 780–789 (2008).

    CAS  PubMed  Google Scholar 

  103. Chen, Y. et al. Myeloid zinc-finger 1 (MZF-1) suppresses prostate tumor growth through enforcing ferroportin-conducted iron egress. Oncogene 34, 3839–3847 (2015).

    CAS  PubMed  Google Scholar 

  104. Calzolari, A. et al. Transferrin receptor 2 is frequently and highly expressed in glioblastomas. Transl Oncol. 3, 123–134 (2010).

    PubMed  PubMed Central  Google Scholar 

  105. Ward, R. J., Zucca, F. A., Duyn, J. H., Crichton, R. R. & Zecca, L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 13, 1045–1060 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Simpson, I. A. et al. A novel model for brain iron uptake: introducing the concept of regulation. J. Cereb. Blood Flow Metab. 35, 48–57 (2015).

    CAS  PubMed  Google Scholar 

  107. McCarthy, R. C. & Kosman, D. J. Mechanisms and regulation of iron trafficking across the capillary endothelial cells of the blood–brain barrier. Front. Mol. Neurosci. 8, 31 (2015).

    PubMed  PubMed Central  Google Scholar 

  108. Nielsen, J. E., Jensen, L. N. & Krabbe, K. Hereditary haemochromatosis: a case of iron accumulation in the basal ganglia associated with a parkinsonian syndrome. J. Neurol. Neurosurg. Psychiatry 59, 318–321 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Dekker, M. C. J. et al. Mutations in the hemochromatosis gene (HFE), Parkinson's disease and parkinsonism. Neurosci. Lett. 348, 117–119 (2003).

    CAS  PubMed  Google Scholar 

  110. Wang, X.-S. et al. Increased incidence of the Hfe mutation in amyotrophic lateral sclerosis and related cellular consequences. J. Neurol. Sci. 227, 27–33 (2004).

    CAS  PubMed  Google Scholar 

  111. Bucossi, S. et al. Association of K832R and R952K SNPs of Wilson's disease gene with Alzheimer's disease. J. Alzheimers Dis. 29, 913–919 (2012).

    CAS  PubMed  Google Scholar 

  112. Kong, S. M. Y. et al. Parkinson's disease-linked human PARK9/ATP13A2 maintains zinc homeostasis and promotes α-synuclein externalization via exosomes. Hum. Mol. Genet. 23, 2816–2833 (2014).

    CAS  PubMed  Google Scholar 

  113. Kell, D. B. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples. Arch. Toxicol. 84, 825–889 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Rouault, T. A. Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat. Rev. Neurosci. 14, 551–564 (2013).

    CAS  PubMed  Google Scholar 

  115. Singh, N., Das, D., Singh, A. & Mohan, M. L. Prion protein and metal interaction: physiological and pathological implications. Curr. Issues Mol. Biol. 12, 99–107 (2010).

    CAS  PubMed  Google Scholar 

  116. Singh, A. et al. Abnormal brain iron homeostasis in human and animal prion disorders. PLoS Pathog. 5, e1000336 (2009).

    PubMed  PubMed Central  Google Scholar 

  117. Dringen, R., Bishop, G. M., Koeppe, M., Dang, T. N. & Robinson, S. R. The pivotal role of astrocytes in the metabolism of iron in the brain. Neurochem. Res. 32, 1884–1890 (2007).

    CAS  PubMed  Google Scholar 

  118. Urrutia, P. et al. Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. J. Neurochem. 126, 541–549 (2013).

    CAS  PubMed  Google Scholar 

  119. Raha-Chowdhury, R. et al. Expression and cellular localization of hepcidin mRNA and protein in normal rat brain. BMC Neurosci. 16, 24 (2015).

    PubMed  PubMed Central  Google Scholar 

  120. Raha, A. A., Vaishnav, R. A., Friedland, R. P., Bomford, A. & Raha-Chowdhury, R. The systemic iron-regulatory proteins hepcidin and ferroportin are reduced in the brain in Alzheimer's disease. Acta Neuropathol. Commun. 1, 55 (2013).

    PubMed  PubMed Central  Google Scholar 

  121. Wang, J., Jiang, H. & Xie, J.-X. Ferroportin1 and hephaestin are involved in the nigral iron accumulation of 6-OHDA-lesioned rats. Eur. J. Neurosci. 25, 2766–2772 (2007).

    PubMed  Google Scholar 

  122. Halon, M. et al. Changes in skeletal muscle iron metabolism outpace amyotrophic lateral sclerosis onset in transgenic rats bearing the G93A hmSOD1 gene mutation. Free Radic. Res. 48, 1363–1370 (2014).

    CAS  PubMed  Google Scholar 

  123. Zarruk, J. G. et al. Expression of iron homeostasis proteins in the spinal cord in experimental autoimmune encephalomyelitis and their implications for iron accumulation. Neurobiol. Dis. 81, 93–107 (2015).

    CAS  PubMed  Google Scholar 

  124. Kroner, A. et al. TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron 83, 1098–1116 (2014).

    CAS  PubMed  Google Scholar 

  125. Mehta, V. et al. Iron is a sensitive biomarker for inflammation in multiple sclerosis lesions. PLoS ONE 8, e57573 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Jeong, S. Y. & David, S. Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J. Biol. Chem. 278, 27144–27148 (2003).

    CAS  PubMed  Google Scholar 

  127. Ayton, S., Faux, N. G. & Bush, A. I. & Alzheimer's Disease Neuroimaging Initiative. Ferritin levels in the cerebrospinal fluid predict Alzheimer's disease outcomes and are regulated by APOE. Nat. Commun. 6, 6760 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Baraibar, M. A., Barbeito, A. G., Muhoberac, B. B. & Vidal, R. A mutant light-chain ferritin that causes neurodegeneration has enhanced propensity toward oxidative damage. Free Radic. Biol. Med. 52, 1692–1697 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Biasiotto, G., Lorenzo, D. D., Archetti, S. & Zanella, I. Iron and neurodegeneration: is ferritinophagy the link? Mol. Neurobiol. 53, 5542–5574 (2016).

    PubMed  Google Scholar 

  130. Stadler, N., Lindner, R. A. & Davies, M. J. Direct detection and quantification of transition metal ions in human atherosclerotic plaques: evidence for the presence of elevated levels of iron and copper. Arterioscler. Thromb. Vasc. Biol. 24, 949–954 (2004).

    CAS  PubMed  Google Scholar 

  131. Satchell, L. & Leake, D. S. Oxidation of low-density lipoprotein by iron at lysosomal pH: implications for atherosclerosis. Biochemistry 51, 3767–3775 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Sullivan, J. L. Do hemochromatosis mutations protect against iron-mediated atherogenesis? Circ. Cardiovasc. Genet. 2, 652–657 (2009).

    CAS  PubMed  Google Scholar 

  133. Robbins, C. S. et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat. Med. 19, 1166–1172 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Chinetti-Gbaguidi, G., Colin, S. & Staels, B. Macrophage subsets in atherosclerosis. Nat. Rev. Cardiol. 12, 10–17 (2015).

    CAS  PubMed  Google Scholar 

  135. Gursel, O. et al. Premature atherosclerosis in children with β-thalassemia major. J. Pediatr. Hematol. Oncol. 34, 630–634 (2012).

    CAS  PubMed  Google Scholar 

  136. Cheung, Y. F., Chow, P. C., Chan, G. C. & Ha, S. Y. Carotid intima-media thickness is increased and related to arterial stiffening in patients with beta-thalassaemia major. Br. J. Haematol. 135, 732–734 (2006).

    CAS  PubMed  Google Scholar 

  137. Li, J. J. et al. Hepcidin destabilizes atherosclerotic plaque via overactivating macrophages after erythrophagocytosis. Arterioscler. Thromb. Vasc. Biol. 32, 1158–1166 (2012).

    CAS  PubMed  Google Scholar 

  138. Kautz, L. et al. Testing the iron hypothesis in a mouse model of atherosclerosis. Cell Rep. 5, 1436–1442 (2013).

    CAS  PubMed  Google Scholar 

  139. Mehta, N. U. et al. Apolipoprotein E−/− mice lacking hemopexin develop increased atherosclerosis via mechanisms that include oxidative stress and altered macrophage function. Arterioscler. Thromb. Vasc. Biol. 36, 1152–1163 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Boyle, J. J. et al. Activating transcription factor 1 directs mhem atheroprotective macrophages through coordinated iron handling and foam cell protection. Circ. Res. 110, 20–33 (2012).

    CAS  PubMed  Google Scholar 

  141. Bories, G. et al. Liver X receptor activation stimulates iron export in human alternative macrophages. Circ. Res. 113, 1196–1205 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Fernández-Real, J. M., McClain, D. & Manco, M. Mechanisms linking glucose homeostasis and iron metabolism toward the onset and progression of type 2 diabetes. Diabetes Care 38, 2169–2176 (2015).

    PubMed  Google Scholar 

  143. Kim, B.-J. et al. Iron overload accelerates bone loss in healthy postmenopausal women and middle-aged men: a 3-year retrospective longitudinal study. J. Bone Miner. Res. 27, 2279–2290 (2012).

    CAS  PubMed  Google Scholar 

  144. Camacho, A. et al. Iron overload in a murine model of hereditary hemochromatosis is associated with accelerated progression of osteoarthritis under mechanical stress. Osteoarthritis Cartilage 24, 494–502 (2016).

    CAS  PubMed  Google Scholar 

  145. Dunaief, J. L. et al. Macular degeneration in a patient with aceruloplasminemia, a disease associated with retinal iron overload. Ophthalmology 112, 1062–1065 (2005).

    PubMed  Google Scholar 

  146. Fargion, S., Valenti, L. & Fracanzani, A. L. Beyond hereditary hemochromatosis: new insights into the relationship between iron overload and chronic liver diseases. Dig. Liver Dis. 43, 89–95 (2011).

    PubMed  Google Scholar 

  147. Keberle, H. The biochemistry of desferrioxamine and its relation to iron metabolism. Ann. NY Acad. Sci. 119, 758–768 (1964). This study describes the isolation and characterization of desferrioxamine B from Streptomyces pilosus , which would become the first iron chelator to be used in the clinic.

    CAS  PubMed  Google Scholar 

  148. Borgna-Pignatti, C. et al. Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. Haematologica 89, 1187–1193 (2004).

    PubMed  Google Scholar 

  149. Olivieri, N. F. et al. Iron-chelation therapy with oral deferiprone in patients with thalassemia major. N. Engl. J. Med. 332, 918–922 (1995).

    CAS  PubMed  Google Scholar 

  150. Nick, H. et al. Development of tridentate iron chelators: from desferrithiocin to ICL670. Curr. Med. Chem. 10, 1065–1076 (2003).

    CAS  PubMed  Google Scholar 

  151. Porter, J. et al. Health-related quality of life, treatment satisfaction, adherence and persistence in β-thalassemia and myelodysplastic syndrome patients with iron overload receiving deferasirox: results from the EPIC clinical trial. Anemia 2012, e297641 (2012).

    Google Scholar 

  152. Borgna-Pignatti, C. & Marsella, M. Iron chelation in thalassemia major. Clin. Ther. 37, 2866–2877 (2015).

    CAS  PubMed  Google Scholar 

  153. Li, H. et al. Transferrin therapy ameliorates disease in β-thalassemic mice. Nat. Med. 16, 177–182 (2010).

    CAS  PubMed  Google Scholar 

  154. Donfrancesco, A. et al. Effects of a single course of deferoxamine in neuroblastoma patients. Cancer Res. 50, 4929–4930 (1990).

    CAS  PubMed  Google Scholar 

  155. Donfrancesco, A. et al. Deferoxamine followed by cyclophosphamide, etoposide, carboplatin, thiotepa, induction regimen in advanced neuroblastoma: preliminary results. Eur. J. Cancer 31, 612–615 (1995).

    Google Scholar 

  156. Kovacevic, Z., Chikhani, S., Lovejoy, D. B. & Richardson, D. R. Novel thiosemicarbazone iron chelators induce up-regulation and phosphorylation of the metastasis suppressor N-myc down-stream regulated gene 1: a new strategy for the treatment of pancreatic cancer. Mol. Pharmacol. 80, 598–609 (2011).

    CAS  PubMed  Google Scholar 

  157. Lynch, S. G., Peters, K. & LeVine, S. M. Desferrioxamine in chronic progressive multiple sclerosis: a pilot study. Mult. Scler. 2, 157–160 (1996).

    CAS  PubMed  Google Scholar 

  158. McLachlan, D. R. C. et al. Intramuscular desferrioxamine in patients with Alzheimer's disease. Lancet 337, 1304–1308 (1991).

    Google Scholar 

  159. Devos, D. et al. Targeting chelatable iron as a therapeutic modality in Parkinson's disease. Antioxid. Redox Signal. 21, 195–210 (2013).

    Google Scholar 

  160. Preza, G. C. et al. Minihepcidins are rationally designed small peptides that mimic hepcidin activity in mice and may be useful for the treatment of iron overload. J. Clin. Invest. 121, 4880–4888 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Casu, C. et al. Minihepcidin peptides as disease modifiers in mice affected by β-thalassemia and polycythemia vera. Blood 128, 265–276 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Ramos, E. et al. Minihepcidins prevent iron overload in a hepcidin-deficient mouse model of severe hemochromatosis. Blood 120, 3829–3836 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Vadhan-Raj, S. et al. Phase 1 study of a hepcidin antagonist, LY2787106, in cancer-associated anemia. Blood 126, 537 (2015).

    Google Scholar 

  164. Cooke, K. S. et al. A fully human anti-hepcidin antibody modulates iron metabolism in both mice and nonhuman primates. Blood 122, 3054–3061 (2013).

    CAS  PubMed  Google Scholar 

  165. Hohlbaum, A. et al. Iron mobilization and pharmacodynamic marker measurements in non-human primates following administration of PRS-080, a novel and highly specific anti-hepcidin therapeutic. Am. J. Hematol. 88, E41 (2013).

    Google Scholar 

  166. van Eijk, L. T. et al. Effect of the antihepcidin Spiegelmer lexaptepid on inflammation-induced decrease in serum iron in humans. Blood 124, 2643–2646 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Boyce, M. et al. Safety, pharmacokinetics and pharmacodynamics of the anti-hepcidin Spiegelmer lexaptepid pegol in healthy subjects. Br. J. Pharmacol. 173, 1580–1588 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Le Gac, G. et al. Structure–function analysis of the human ferroportin iron exporter (SLC40A1): effect of hemochromatosis type 4 disease mutations and identification of critical residues. Hum. Mutat. 34, 1371–1380 (2013).

    CAS  PubMed  Google Scholar 

  169. Taniguchi, R. et al. Outward- and inward-facing structures of a putative bacterial transition-metal transporter with homology to ferroportin. Nat. Commun. 6, 8545 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Fernandes, A. et al. The molecular basis of hepcidin-resistant hereditary hemochromatosis. Blood 114, 437–443 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Fung, E. et al. High-throughput screening of small molecules identifies hepcidin antagonists. Mol. Pharmacol. 83, 681–690 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Leung, D. et al. LY2928057, an antibody targeting ferroportin, is a potent inhibitor of hepcidin activity and increases iron mobilization in normal cynomolgus monkeys. Blood 122, 3433 (2013).

    Google Scholar 

  173. Andriopoulos, B. Jr et al. BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat. Genet. 41, 482–487 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Poli, M. et al. Glycol-split nonanticoagulant heparins are inhibitors of hepcidin expression in vitro and in vivo. Blood 123, 1564–1573 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Yu, P. B. et al. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat. Chem. Biol. 4, 33–41 (2008).

    CAS  PubMed  Google Scholar 

  176. Cuny, G. D. et al. Structure–activity relationship study of bone morphogenetic protein (BMP) signaling inhibitors. Bioorg. Med. Chem. Lett. 18, 4388–4392 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Akinc, A. et al. Targeting the hepcidin pathway with RNAi therapeutics for the treatment of anemia. Blood 118, 688 (2011).

    Google Scholar 

  178. Babitt, J. L. et al. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat. Genet. 38, 531–539 (2006).

    CAS  PubMed  Google Scholar 

  179. Silvestri, L. et al. The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab. 8, 502–511 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Du, X. et al. The serine protease TMPRSS6 is required to sense iron deficiency. Science 320, 1088–1092 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Maurer, E. et al. Insights into matriptase-2 substrate binding and inhibition mechanisms by analyzing active-site-mutated variants. ChemMedChem 7, 68–72 (2012).

    CAS  PubMed  Google Scholar 

  182. Sisay, M. T. et al. Identification of the first low-molecular-weight inhibitors of matriptase-2. J. Med. Chem. 53, 5523–5535 (2010).

    CAS  PubMed  Google Scholar 

  183. Guo, S. et al. Reducing TMPRSS6 ameliorates hemochromatosis and β-thalassemia in mice. J. Clin. Invest. 123, 1531–1541 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Casu, C. et al. Combination of Tmprss6- ASO and the iron chelator deferiprone improves erythropoiesis and reduces iron overload in a mouse model of beta-thalassemia intermedia. Haematologica 101, e8–e11 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Schmidt, P. J. et al. An RNAi therapeutic targeting Tmprss6 decreases iron overload in Hfe−/− mice and ameliorates anemia and iron overload in murine β-thalassemia intermedia. Blood 121, 1200–1208 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Béliveau, F., Désilets, A. & Leduc, R. Probing the substrate specificities of matriptase, matriptase-2, hepsin and DESC1 with internally quenched fluorescent peptides. FEBS J. 276, 2213–2226 (2009).

    PubMed  Google Scholar 

  187. Beckmann, A.-M. et al. En route to new therapeutic options for iron overload diseases: matriptase-2 as a target for Kunitz-type inhibitors. ChemBioChem 17, 595–604 (2016).

    CAS  PubMed  Google Scholar 

  188. Zhen, A. W. et al. The small molecule, genistein, increases hepcidin expression in human hepatocytes. Hepatology 58, 1315–1325 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Chung, B., Matak, P., McKie, A. T. & Sharp, P. Leptin increases the expression of the iron regulatory hormone hepcidin in HuH7 human hepatoma cells. J. Nutr. 137, 2366–2370 (2007).

    CAS  PubMed  Google Scholar 

  190. Zhang, S.-P. AG490: an inhibitor of hepcidin expression in vivo. World J. Gastroenterol. 17, 5032 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Fatih, N. et al. Natural and synthetic STAT3 inhibitors reduce hepcidin expression in differentiated mouse hepatocytes expressing the active phosphorylated STAT3 form. J. Mol. Med. 88, 477–486 (2010).

    CAS  PubMed  Google Scholar 

  192. Czachorowski, M., Lam- Yuk-Tseung, S., Cellier, M. & Gros, P. Transmembrane topology of the mammalian Slc11a2 iron transporter. Biochemistry 48, 8422–8434 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Wang, D., Song, Y., Li, J., Wang, C. & Li, F. Structure and metal ion binding of the first transmembrane domain of DMT1. Biochim. Biophys. Acta 1808, 1639–1644 (2011).

    CAS  PubMed  Google Scholar 

  194. Ehrnstorfer, I. A., Geertsma, E. R., Pardon, E., Steyaert, J. & Dutzler, R. Crystal structure of a SLC11 (NRAMP) transporter reveals the basis for transition-metal ion transport. Nat. Struct. Mol. Biol. 21, 990–996 (2014).

    CAS  PubMed  Google Scholar 

  195. Buckett, P. D. & Wessling-Resnick, M. Small molecule inhibitors of divalent metal transporter-1. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G798–G804 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Horonchik, L. & Wessling-Resnick, M. The small-molecule iron transport inhibitor ferristatin/NSC306711 promotes degradation of the transferrin receptor. Chem. Biol. 15, 647–653 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Byrne, S. L. et al. Ferristatin II promotes degradation of transferrin receptor-1 in vitro and in vivo. PLoS ONE 8, e70199 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Yanatori, I., Yasui, Y., Noguchi, Y. & Kishi, F. Inhibition of iron uptake by ferristatin II is exerted through internalization of DMT1 at the plasma membrane. Cell Biol. Int. 39, 427–434 (2015).

    CAS  PubMed  Google Scholar 

  199. Alkhateeb, A. A. et al. The small molecule ferristatin II induces hepatic hepcidin expression in vivo and in vitro. Am. J. Physiol. Gastrointest. Liver Physiol. 308, G1019–G1026 (2015).

    PubMed  PubMed Central  Google Scholar 

  200. International Agency for Research on Cancer in A Review of Human Carcinogens. Part F: Chemical Agents and Related Occupations Vol. 100F 53–64 (World Health Organization, 2012).

  201. Wetli, H. A., Buckett, P. D. & Wessling-Resnick, M. Small-molecule screening identifies the selanazal drug ebselen as a potent inhibitor of DMT1-mediated iron uptake. Chem. Biol. 13, 965–972 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Davis, M. T. & Bartfay, W. J. Ebselen decreases oxygen free radical production and iron concentrations in the hearts of chronically iron-overloaded mice. Biol. Res. Nurs. 6, 37–45 (2004).

    PubMed  Google Scholar 

  203. Cadieux, J. A. et al. Synthesis and biological evaluation of substituted pyrazoles as blockers of divalent metal transporter 1 (DMT1). Bioorg. Med. Chem. Lett. 22, 90–95 (2012).

    CAS  PubMed  Google Scholar 

  204. Zhang, Z. et al. Discovery of benzylisothioureas as potent divalent metal transporter 1 (DMT1) inhibitors. Bioorg. Med. Chem. Lett. 22, 5108–5113 (2012).

    CAS  PubMed  Google Scholar 

  205. Montalbetti, N. et al. Discovery and characterization of a novel non-competitive inhibitor of the divalent metal transporter DMT1/SLC11A2. Biochem. Pharmacol. 96, 216–224 (2015).

    CAS  PubMed  Google Scholar 

  206. Span, K. et al. A novel oral iron-complex formulation: encapsulation of hemin in polymeric micelles and its in vitro absorption. Eur. J. Pharm. Biopharm. 108, 226–234 (2016).

    CAS  PubMed  Google Scholar 

  207. Latunde-Dada, G. O. et al. A nanoparticulate ferritin-core mimetic is well taken up by HuTu 80 duodenal cells and its absorption in mice is regulated by body iron. J. Nutr. 144, 1896–1902 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Taylor, K. M., Morgan, H. E., Johnson, A. & Nicholson, R. I. Structure–function analysis of a novel member of the LIV-1 subfamily of zinc transporters, ZIP14. FEBS Lett. 579, 427–432 (2005).

    CAS  PubMed  Google Scholar 

  209. Peyssonnaux, C. et al. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J. Clin. Invest. 117, 1926–1932 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Qian, Z.-M. et al. Divalent metal transporter 1 is a hypoxia-inducible gene. J. Cell. Physiol. 226, 1596–1603 (2011).

    CAS  PubMed  Google Scholar 

  211. Shah, Y. M., Matsubara, T., Ito, S., Yim, S.-H. & Gonzalez, F. J. Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency. Cell Metab. 9, 152–164 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Tacchini, L., Bianchi, L., Bernelli-Zazzera, A. & Cairo, G. Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. J. Biol. Chem. 274, 24142–24146 (1999).

    CAS  PubMed  Google Scholar 

  213. Taylor, M. et al. Hypoxia-inducible factor-2α mediates the adaptive increase of intestinal ferroportin during iron deficiency in mice. Gastroenterology 140, 2044–2055 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Scheuermann, T. H. et al. Allosteric inhibition of hypoxia inducible factor-2 with small molecules. Nat. Chem. Biol. 9, 271–276 (2013). This study identifies small molecules that can block HIF2 dimerization and thereby inhibit its function as a transcription factor controlling the expression of numerous genes, including those involved in iron metabolism.

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Scheuermann, T. H. et al. Isoform-selective and stereoselective inhibition of hypoxia inducible factor-2. J. Med. Chem. 58, 5930–5941 (2015).

    CAS  PubMed  Google Scholar 

  216. Bruick, R. K. & McKnight, S. L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337–1340 (2001).

    CAS  PubMed  Google Scholar 

  217. Epstein, A. C. R. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001).

    CAS  PubMed  Google Scholar 

  218. McDonough, M. A. et al. Cellular oxygen sensing: crystal structure of hypoxia-inducible factor prolyl hydroxylase (PHD2). Proc. Natl Acad. Sci. USA 103, 9814–9819 (2006).

    CAS  PubMed  Google Scholar 

  219. Maxwell, P. H. & Eckardt, K.-U. HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond. Nat. Rev. Nephrol. 12, 157–168 (2016).

    CAS  PubMed  Google Scholar 

  220. Barrett, T. D. et al. Prolyl hydroxylase inhibition corrects functional iron deficiency and inflammation-induced anaemia in rats. Br. J. Pharmacol. 172, 4078–4088 (2015). This study is the first to demonstrate the utility of PHD inhibitors in improving iron availability in preclinical models of iron deficiency and AI/ACD.

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Rajagopalan, S., Rane, A., Chinta, S. J. & Andersen, J. K. Regulation of ATP13A2 via PHD2-HIF1α signaling is critical for cellular iron homeostasis: implications for Parkinson's disease. J. Neurosci. 36, 1086–1095 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Provenzano, R. et al. Roxadustat (FG-4592) versus epoetin alfa for anemia in patients receiving maintenance hemodialysis: a phase 2, randomized, 6- to 19-week, open-label, active-comparator, dose-ranging, safety and exploratory efficacy study. Am. J. Kidney Dis. 67, 912–924 (2016).

    CAS  PubMed  Google Scholar 

  223. Brigandi, R. A. et al. A novel hypoxia-inducible factor-prolyl hydroxylase inhibitor (GSK1278863) for anemia in CKD: a 28-day, phase 2A randomized trial. Am. J. Kidney Dis. 67, 861–871 (2016).

    CAS  PubMed  Google Scholar 

  224. Hartman, C. S. et al. AKB-6548, a new hypoxia-inducible factor prolyl hydroxylase inhibitor increases hemoglobin while decreasing ferritin in a 28-day, phase 2a dose escalation study in stage 3 and 4 chronic kidney disease patients with anemia [Abstract]. J. Am. Soc. Nephrol. 22, 435A (2011).

    Google Scholar 

  225. Boettcher, M. F. et al. First-in-man study with BAY 85–3934 — a new oral selective HIF-PH inhibitor for the treatment of renal anemia [abstract]. J. Am. Soc. Nephrol. 24, 347A (2013).

    Google Scholar 

  226. Akizawa, T., Hanaki, K. & Arai, M. JTZ-951, an oral novel Hif-Phd inhibitor, elevates hemoglobin in Japanese anemic patients with chronic kidney disease not on dialysis. Nephrol. Dial. Transplant. 30, iii196 (2015).

    Google Scholar 

  227. Jain, M. et al. Pharmacological characterization of ZYAN1, a novel prolyl hydroxylase inhibitor for the treatment of anemia. Drug Res. 66, 107–112 (2015).

    Google Scholar 

  228. Salvati, A. et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8, 137–143 (2013).

    CAS  PubMed  Google Scholar 

  229. Singh, R. et al. Dose-dependent therapeutic distinction between active and passive targeting revealed using transferrin-coated PGMA nanoparticles. Small 12, 351–359 (2016).

    CAS  PubMed  Google Scholar 

  230. van der Meel, R., Vehmeijer, L. J. C., Kok, R. J., Storm, G. & van Gaal, E. V. B. Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status. Adv. Drug Deliv. Rev. 65, 1284–1298 (2013).

    CAS  PubMed  Google Scholar 

  231. Senzer, N. et al. Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol. Ther. 21, 1096–1103 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Zhang, H. et al. Transferrin-mediated fullerenes nanoparticles as Fe2+-dependent drug vehicles for synergistic anti-tumor efficacy. Biomaterials 37, 353–366 (2015).

    CAS  PubMed  Google Scholar 

  233. O'Neill, P. M., Barton, V. E. & Ward, S. A. The molecular mechanism of action of artemisinin — the debate continues. Molecules 15, 1705–1721 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Wiley, D. T., Webster, P., Gale, A. & Davis, M. E. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc. Natl Acad. Sci. USA 110, 8662–8667 (2013).

    CAS  PubMed  Google Scholar 

  235. Sehlin, D. et al. Antibody-based PET imaging of amyloid beta in mouse models of Alzheimer's disease. Nat. Commun. 7, 10759 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Jutz, G., van Rijn, P., Santos Miranda, B. & Böker, A. Ferritin: a versatile building block for bionanotechnology. Chem. Rev. 115, 1653–1701 (2015).

    CAS  PubMed  Google Scholar 

  237. Crich, S. G. et al. Targeting ferritin receptors for the selective delivery of imaging and therapeutic agents to breast cancer cells. Nanoscale 7, 6527–6533 (2015).

    Google Scholar 

  238. Lei, Y. et al. Targeted tumor delivery and controlled release of neuronal drugs with ferritin nanoparticles to regulate pancreatic cancer progression. J. Control. Release 232, 131–142 (2016).

    CAS  PubMed  Google Scholar 

  239. Hu, H. et al. The M2 phenotype of tumor-associated macrophages in the stroma confers a poor prognosis in pancreatic cancer. Tumor Biol. 37, 8657–8664 (2016).

    CAS  Google Scholar 

  240. Van Gorp, H., Delputte, P. L. & Nauwynck, H. J. Scavenger receptor CD163, a Jack-of-all-trades and potential target for cell-directed therapy. Mol. Immunol. 47, 1650–1660 (2010).

    CAS  PubMed  Google Scholar 

  241. Etzerodt, A. et al. Efficient intracellular drug-targeting of macrophages using stealth liposomes directed to the hemoglobin scavenger receptor CD163. J. Control. Release 160, 72–80 (2012).

    CAS  PubMed  Google Scholar 

  242. Amin, M. L., Kim, D. & Kim, S. Development of hematin conjugated PLGA nanoparticle for selective cancer targeting. Eur. J. Pharm. Sci. 91, 138–143 (2016).

    CAS  PubMed  Google Scholar 

  243. Takle, G. B. et al. Delivery of oligoribonucleotides to human hepatoma cells using cationic lipid particles conjugated to ferric protoporphyrin IX (heme). Antisense Nucleic Acid. Drug Dev. 7, 177–185 (1997).

    PubMed  Google Scholar 

  244. Kell, D. B. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med. Genomics 2, 2 (2009).

    PubMed  PubMed Central  Google Scholar 

  245. Nairz, M. et al. 'Ride on the ferrous wheel' — the cycle of iron in macrophages in health and disease. Immunobiology 220, 280–294 (2015).

    CAS  PubMed  Google Scholar 

  246. Ganz, T. & Nemeth, E. Iron homeostasis in host defence and inflammation. Nat. Rev. Immunol. 15, 500–510 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Miron, V. E. et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16, 1211–1218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Biswas, S. K., Chittezhath, M., Shalova, I. N. & Lim, J.-Y. Macrophage polarization and plasticity in health and disease. Immunol. Res. 53, 11–24 (2012).

    CAS  PubMed  Google Scholar 

  249. Bronte, V. & Murray, P. J. Understanding local macrophage phenotypes in disease: modulating macrophage function to treat cancer. Nat. Med. 21, 117–119 (2015).

    CAS  PubMed  Google Scholar 

  250. Crielaard, B. J. et al. Macrophages and liposomes in inflammatory disease: friends or foes? Int. J. Pharm. 416, 499–506 (2011).

    CAS  PubMed  Google Scholar 

  251. Kiessling, F., Mertens, M. E., Grimm, J. & Lammers, T. Nanoparticles for imaging: top or flop? Radiology 273, 10–28 (2014).

    PubMed  PubMed Central  Google Scholar 

  252. Lartigue, L. et al. Biodegradation of iron oxide nanocubes: high-resolution in situ monitoring. ACS Nano 7, 3939–3952 (2013).

    CAS  PubMed  Google Scholar 

  253. Daldrup-Link, H. E. et al. MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles. Clin. Cancer Res. 17, 5695–5704 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Hervault, A. et al. Doxorubicin loaded dual pH- and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications. Nanoscale 8, 12152–12161 (2016).

    CAS  PubMed  Google Scholar 

  255. Xian-hui, D. et al. Age-related changes of brain iron load changes in the frontal cortex in APPswe/PS1ΔE9 transgenic mouse model of Alzheimer's disease. J. Trace Elem. Med. Biol. 30, 118–123 (2015).

    PubMed  Google Scholar 

  256. Salazar, J. et al. Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson's disease. Proc. Natl Acad. Sci. USA 105, 18578–18583 (2008).

    CAS  PubMed  Google Scholar 

  257. Brookes, M. J. et al. Modulation of iron transport proteins in human colorectal carcinogenesis. Gut 55, 1449–1460 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Hulet, S. W., Powers, S. & Connor, J. R. Distribution of transferrin and ferritin binding in normal and multiple sclerotic human brains. J. Neurol. Sci. 165, 48–55 (1999).

    CAS  PubMed  Google Scholar 

  259. Li, W., Xu, L.-H., Forssell, C., Sullivan, J. L. & Yuan, X.-M. Overexpression of transferrin receptor and ferritin related to clinical symptoms and destabilization of human carotid plaques. Exp. Biol. Med. 233, 818–826 (2008).

    CAS  Google Scholar 

  260. Jefferies, W. A. et al. Reactive microglia specifically associated with amyloid plaques in Alzheimer's disease brain tissue express melanotransferrin. Brain Res. 712, 122–126 (1996).

    CAS  PubMed  Google Scholar 

  261. Kalaria, R. N., Sromek, S. M., Grahovac, I. & Harik, S. I. Transferrin receptors of rat and human brain and cerebral microvessels and their status in Alzheimer's disease. Brain Res. 585, 87–93 (1992).

    CAS  PubMed  Google Scholar 

  262. Faucheux, B. A. et al. Distribution of 125I-ferrotransferrin binding sites in the mesencephalon of control subjects and patients with Parkinson's disease. J. Neurochem. 60, 2338–2341 (1993).

    CAS  PubMed  Google Scholar 

  263. Morris, C. M., Candy, J. M., Omar, S., Bloxham, C. A. & Edwardson, J. A. Transferrin receptors in the parkinsonian midbrain. Neuropathol. Appl. Neurobiol. 20, 468–472 (1994).

    CAS  PubMed  Google Scholar 

  264. Visanji, N. P. et al. Iron deficiency in parkinsonism: region-specific iron dysregulation in Parkinson's disease and multiple system atrophy. J. Park. Dis. 3, 523–537 (2013).

    CAS  Google Scholar 

  265. Zhang, Z. et al. Parenchymal accumulation of CD163+ macrophages/microglia in multiple sclerosis brains. J. Neuroimmunol. 237, 73–79 (2011).

    CAS  PubMed  Google Scholar 

  266. Pey, P., Pearce, R. K., Kalaitzakis, M. E., Griffin, W. S. T. & Gentleman, S. M. Phenotypic profile of alternative activation marker CD163 is different in Alzheimer's and Parkinson's disease. Acta Neuropathol. Commun. 2, 21 (2014).

    PubMed  PubMed Central  Google Scholar 

  267. Boyle, J. J. et al. Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype. Am. J. Pathol. 174, 1097–1108 (2009).

    PubMed  PubMed Central  Google Scholar 

  268. Tiainen, S. et al. High numbers of macrophages, especially M2-like (CD163-positive), correlate with hyaluronan accumulation and poor outcome in breast cancer. Histopathology 66, 873–883 (2015).

    PubMed  Google Scholar 

  269. Lundholm, M. et al. Secreted factors from colorectal and prostate cancer cells skew the immune response in opposite directions. Sci. Rep. 5, 15651 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Mignogna, C. et al. A reappraisal of macrophage polarization in glioblastoma: histopathological and immunohistochemical findings and review of the literature. Pathol. Res. Pract. 212, 491–499 (2016).

    CAS  PubMed  Google Scholar 

  271. LeVine, S. M. Iron deposits in multiple sclerosis and Alzheimer's disease brains. Brain Res. 760, 298–303 (1997).

    CAS  PubMed  Google Scholar 

  272. Connor, J. R., Menzies, S. L., St. Martin, S. M. & Mufson, E. J. A histochemical study of iron, transferrin, and ferritin in Alzheimer's diseased brains. J. Neurosci. Res. 31, 75–83 (1992).

    CAS  PubMed  Google Scholar 

  273. Ji, J. et al. Low expression of ferroxidases is implicated in the iron retention in human atherosclerotic plaques. Biochem. Biophys. Res. Commun. 464, 1134–1138 (2015).

    CAS  PubMed  Google Scholar 

  274. Loeffler, D. A. et al. Transferrin and iron in normal, Alzheimer's disease, and Parkinson's disease brain regions. J. Neurochem. 65, 710–716 (1995).

    CAS  PubMed  Google Scholar 

  275. Galesloot, T. E. et al. Serum hepcidin is associated with presence of plaque in postmenopausal women of a general population. Arterioscler. Thromb. Vasc. Biol. 34, 446–456 (2014).

    CAS  PubMed  Google Scholar 

  276. Orlandi, R. et al. Hepcidin and ferritin blood level as noninvasive tools for predicting breast cancer. Ann. Oncol. 25, 352–357 (2014).

    CAS  PubMed  Google Scholar 

  277. LeVine, S. M. et al. Ferritin, transferrin and iron concentrations in the cerebrospinal fluid of multiple sclerosis patients. Brain Res. 821, 511–515 (1999).

    CAS  PubMed  Google Scholar 

  278. Sato, Y. et al. Cerebrospinal fluid ferritin in glioblastoma: evidence for tumor synthesis. J. Neurooncol. 40, 47–50 (1998).

    CAS  PubMed  Google Scholar 

  279. Sung, K.-C. et al. Ferritin is independently associated with the presence of coronary artery calcium in 12 033 men. Arterioscler. Thromb. Vasc. Biol. 32, 2525–2530 (2012).

    CAS  PubMed  Google Scholar 

  280. Chua, A. C., Knuiman, M. W., Trinder, D., Divitini, M. L. & Olynyk, J. K. Higher concentrations of serum iron and transferrin saturation but not serum ferritin are associated with cancer outcomes. Am. J. Clin. Nutr. 104, 736–742 (2016).

    CAS  PubMed  Google Scholar 

  281. Wang, R., Liu, Z. & Yan, L. Serum iron levels and Parkinson's disease risk: evidence from a meta-analysis. Int. J. Clin. Exp. Med. 9, 3167–3172 (2016).

    CAS  Google Scholar 

  282. Valberg, L. S., Flanagan, P. R., Kertesz, A. & Ebers, G. C. Abnormalities in iron metabolism in multiple sclerosis. Can. J. Neurol. Sci. 16, 184–186 (1989).

    CAS  PubMed  Google Scholar 

  283. Faux, N. G. et al. An anemia of Alzheimer's disease. Mol. Psychiatry 19, 1227–1234 (2014).

    CAS  PubMed  Google Scholar 

  284. Hare, D. J. et al. Decreased plasma iron in Alzheimer's disease is due to transferrin desaturation. ACS Chem. Neurosci. 6, 398–402 (2015).

    CAS  PubMed  Google Scholar 

  285. Meynard, D. et al. Lack of the bone morphogenetic protein BMP6 induces massive iron overload. Nat. Genet. 41, 478–481 (2009).

    CAS  PubMed  Google Scholar 

  286. Feng, Q., Migas, M. C., Waheed, A., Britton, R. S. & Fleming, R. E. Ferritin upregulates hepatic expression of bone morphogenetic protein 6 and hepcidin in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1397–G1404 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Rausa, M. et al. Bmp6 expression in murine liver non parenchymal cells: a mechanism to control their high iron exporter activity and protect hepatocytes from iron overload? PLoS ONE 10, e0122696 (2015).

    PubMed  PubMed Central  Google Scholar 

  288. Daher, R. et al. Heterozygous mutations in BMP6 pro-peptide lead to inappropriate hepcidin synthesis and moderate iron overload in humans. Gastroenterology 150, 672–683.e4 (2016).

    CAS  PubMed  Google Scholar 

  289. Kautz, L. et al. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat. Genet. 46, 678–684 (2014). This study identifies erythroferrone, the protein that links erythropoietic activity to suppressed HAMP transcription.

    CAS  PubMed  PubMed Central  Google Scholar 

  290. Kautz, L., Jung, G., Nemeth, E. & Ganz, T. Erythroferrone contributes to recovery from anemia of inflammation. Blood 124, 2569–2574 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  291. Montosi, G. et al. Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin (SLC11A3) gene. J. Clin. Invest. 108, 619–623 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  292. Njajou, O. T. et al. A mutation in SLC11A3 is associated with autosomal dominant hemochromatosis. Nat. Genet. 28, 213–214 (2001).

    CAS  PubMed  Google Scholar 

  293. Wallace, D. F., Clark, R. M., Harley, H. A. J. & Subramaniam, V. N. Autosomal dominant iron overload due to a novel mutation of ferroportin1 associated with parenchymal iron loading and cirrhosis. J. Hepatol. 40, 710–713 (2004).

    CAS  PubMed  Google Scholar 

  294. Healey, E. G. et al. Repulsive guidance molecule is a structural bridge between neogenin and bone morphogenetic protein. Nat. Struct. Mol. Biol. 22, 458–465 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  295. Papanikolaou, G. et al. Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nat. Genet. 36, 77–82 (2004).

    CAS  PubMed  Google Scholar 

  296. D'Alessio, F., Hentze, M. W. & Muckenthaler, M. U. The hemochromatosis proteins HFE, TfR2, and HJV form a membrane-associated protein complex for hepcidin regulation. J. Hepatol. 57, 1052–1060 (2012).

    CAS  PubMed  Google Scholar 

  297. Roetto, A. et al. Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat. Genet. 33, 21–22 (2003).

    CAS  PubMed  Google Scholar 

  298. Vaiopoulos, G. et al. Arthropathy in juvenile hemochromatosis. Arthritis Rheum. 48, 227–230 (2003).

    PubMed  Google Scholar 

  299. Feder, J. N. et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat. Genet. 13, 399–408 (1996).

    CAS  PubMed  Google Scholar 

  300. Wallace, D. F. et al. Combined deletion of Hfe and transferrin receptor 2 in mice leads to marked dysregulation of hepcidin and iron overload. Hepatology 50, 1992–2000 (2009).

    CAS  PubMed  Google Scholar 

  301. Latour, C. et al. Differing impact of the deletion of hemochromatosis-associated molecules HFE and transferrin receptor-2 on the iron phenotype of mice lacking bone morphogenetic protein 6 or hemojuvelin. Hepatology 63, 126–137 (2016).

    CAS  PubMed  Google Scholar 

  302. Schmidt, P. J., Toran, P. T., Giannetti, A. M., Bjorkman, P. J. & Andrews, N. C. The transferrin receptor modulates Hfe-dependent regulation of hepcidin expression. Cell Metab. 7, 205–214 (2008).

    PubMed  PubMed Central  Google Scholar 

  303. Nemeth, E. et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J. Clin. Invest. 113, 1271–1276 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  304. Boulanger, M. J., Chow, D., Brevnova, E. E. & Garcia, K. C. Hexameric structure and assembly of the interleukin-6/IL-6 α-receptor/gp130 complex. Science 300, 2101–2104 (2003).

    CAS  PubMed  Google Scholar 

  305. Meynard, D. et al. Regulation of TMPRSS6 by BMP6 and iron in human cells and mice. Blood 118, 747–756 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  306. Nai, A. et al. Limiting hepatic Bmp-Smad signaling by matriptase-2 is required for erythropoietin-mediated hepcidin suppression in mice. Blood 127, 2327–2336 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  307. Bell, C. H. et al. Structure of the repulsive guidance molecule (RGM)-neogenin signaling hub. Science 341, 77–80 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  308. Zhao, N. et al. Neogenin facilitates the induction of hepcidin expression by hemojuvelin in the liver. J. Biol. Chem. 291, 12322–12335 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  309. Kawabata, H. et al. Molecular cloning of transferrin receptor 2. A new member of the transferrin receptor-like family. J. Biol. Chem. 274, 20826–20832 (1999).

    CAS  PubMed  Google Scholar 

  310. Camaschella, C. et al. The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22. Nat. Genet. 25, 14–15 (2000).

    CAS  PubMed  Google Scholar 

  311. Pagani, A. et al. Regulation of cell surface transferrin receptor-2 by iron-dependent cleavage and release of a soluble form. Haematologica 100, 458–465 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  312. Jiang, Y., Oliver, P., Davies, K. E. & Platt, N. Identification and characterization of murine SCARA5, a novel class A scavenger receptor that is expressed by populations of epithelial cells. J. Biol. Chem. 281, 11834–11845 (2006).

    CAS  PubMed  Google Scholar 

  313. Ojala, J. R. M., Pikkarainen, T., Elmberger, G. & Tryggvason, K. Progressive reactive lymphoid connective tissue disease and development of autoantibodies in scavenger receptor A5-deficient mice. Am. J. Pathol. 182, 1681–1695 (2013).

    CAS  PubMed  Google Scholar 

  314. Philippidis, P. et al. Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis antiinflammatory monocyte-macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery. Circ. Res. 94, 119–126 (2004).

    CAS  PubMed  Google Scholar 

  315. Vargas, J. D. et al. Stromal cell-derived receptor 2 and cytochrome b561 are functional ferric reductases. Biochim. Biophys. Acta 1651, 116–123 (2003).

    CAS  PubMed  Google Scholar 

  316. Gunshin, H. et al. Cybrd1 (duodenal cytochrome b) is not necessary for dietary iron absorption in mice. Blood 106, 2879–2883 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  317. Choi, J. et al. Duodenal reductase activity and spleen iron stores are reduced and erythropoiesis is abnormal in Dcytb knockout mice exposed to hypoxic conditions. J. Nutr. 142, 1929–1934 (2012).

    CAS  PubMed  Google Scholar 

  318. Gunshin, H. et al. Slc11a2 is required for intestinal iron absorption and erythropoiesis but dispensable in placenta and liver. J. Clin. Invest. 115, 1258–1266 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  319. Kvarnung, M. et al. Mutations in FLVCR2 associated with Fowler syndrome and survival beyond infancy. Clin. Genet. 89, 99–103 (2016).

    CAS  PubMed  Google Scholar 

  320. Delaby, C. et al. Subcellular localization of iron and heme metabolism related proteins at early stages of erythrophagocytosis. PLoS ONE 7, e42199 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  321. Herz, J., Clouthier, D. E. & Hammer, R. E. LDL receptor-related protein internalizes and degrades uPA-PAI-1 complexes and is essential for embryo implantation. Cell 71, 411–421 (1992).

    CAS  PubMed  Google Scholar 

  322. Overton, C. D., Yancey, P. G., Major, A. S., Linton, M. F. & Fazio, S. Deletion of macrophage LDL receptor-related protein increases atherogenesis in the mouse. Circ. Res. 100, 670–677 (2007).

    CAS  PubMed  Google Scholar 

  323. Gomes, I. M., Maia, C. J. & Santos, C. R. STEAP proteins: from structure to applications in cancer therapy. Mol. Cancer Res. 10, 573–587 (2012).

    CAS  PubMed  Google Scholar 

  324. Grandchamp, B. et al. A novel type of congenital hypochromic anemia associated with a nonsense mutation in the STEAP3/TSAP6 gene. Blood 118, 6660–6666 (2011).

    CAS  PubMed  Google Scholar 

  325. Liu, D. et al. Human STEAP3 mutations with no phenotypic red cell changes. Blood 127, 1067–1071 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  326. Knisely, A. S., Gelbart, T. & Beutler, E. Molecular characterization of a third case of human atransferrinemia. Blood 104, 2607 (2004).

    CAS  PubMed  Google Scholar 

  327. Levy, J. E., Jin, O., Fujiwara, Y., Kuo, F. & Andrews, N. Transferrin receptor is necessary for development of erythrocytes and the nervous system. Nat. Genet. 21, 396–399 (1999).

    CAS  PubMed  Google Scholar 

  328. Hojyo, S. et al. The zinc transporter SLC39A14/ZIP14 controls G-protein coupled receptor-mediated signaling required for systemic growth. PLoS ONE 6, e18059 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  329. Ji, C. & Kosman, D. J. Molecular mechanisms of non-transferrin-bound and transferring-bound iron uptake in primary hippocampal neurons. J. Neurochem. 133, 668–683 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  330. Cozzi, A. et al. Human L-ferritin deficiency is characterized by idiopathic generalized seizures and atypical restless leg syndrome. J. Exp. Med. 210, 1779–1791 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  331. Poss, K. D. & Tonegawa, S. Heme oxygenase 1 is required for mammalian iron reutilization. Proc. Natl Acad. Sci. USA 94, 10919–10924 (1997).

    CAS  PubMed  Google Scholar 

  332. Kovtunovych, G., Eckhaus, M. A., Ghosh, M. C., Ollivierre-Wilson, H. & Rouault, T. A. Dysfunction of the heme recycling system in heme oxygenase 1-deficient mice: effects on macrophage viability and tissue iron distribution. Blood 116, 6054–6062 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  333. Kawashima, A., Oda, Y., Yachie, A., Koizumi, S. & Nakanishi, I. Heme oxygenase-1 deficiency: the first autopsy case. Hum. Pathol. 33, 125–130 (2002).

    PubMed  Google Scholar 

  334. Scortegagna, M. et al. Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1−/− mice. Nat. Genet. 35, 331–340 (2003).

    CAS  PubMed  Google Scholar 

  335. Zhuang, Z. et al. Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. N. Engl. J. Med. 367, 922–930 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  336. Sanchez, M., Galy, B., Muckenthaler, M. U. & Hentze, M. W. Iron-regulatory proteins limit hypoxia-inducible factor-2α expression in iron deficiency. Nat. Struct. Mol. Biol. 14, 420–426 (2007).

    CAS  PubMed  Google Scholar 

  337. Troadec, M.-B. et al. Targeted deletion of the mouse Mitoferrin1 gene: from anemia to protoporphyria. Blood 117, 5494–5502 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  338. Percy, M. J. et al. A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostasis. Proc. Natl Acad. Sci. USA 103, 654–659 (2006).

    CAS  PubMed  Google Scholar 

  339. Takeda, K. et al. Placental but not heart defects are associated with elevated hypoxia-inducible factor α levels in mice lacking prolyl hydroxylase domain protein 2. Mol. Cell. Biol. 26, 8336–8346 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  340. Kono, S. Aceruloplasminemia. Curr. Drug Targets 13, 1190–1199 (2012).

    CAS  PubMed  Google Scholar 

  341. Quigley, J. G. et al. Identification of a human heme exporter that is essential for erythropoiesis. Cell 118, 757–766 (2004).

    CAS  PubMed  Google Scholar 

  342. Byon, J. C. H., Chen, J., Doty, R. T. & Abkowitz, J. L. FLVCR is necessary for erythroid maturation, may contribute to platelet maturation, but is dispensable for normal hematopoietic stem cell function. Blood 122, 2903–2910 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  343. Chiabrando, D. et al. The mitochondrial heme exporter FLVCR1b mediates erythroid differentiation. J. Clin. Invest. 122, 4569–4579 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  344. Rey, M. A. et al. Enhanced alternative splicing of the FLVCR1 gene in Diamond Blackfan anemia disrupts FLVCR1 expression and function that are critical for erythropoiesis. Haematologica 93, 1617–1626 (2008).

    CAS  PubMed  Google Scholar 

  345. Philip, M. et al. Heme exporter FLVCR is required for T cell development and peripheral survival. J. Immunol. 194, 1677–1685 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  346. Vulpe, C. D. et al. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat. Genet. 21, 195–199 (1999).

    CAS  PubMed  Google Scholar 

  347. Griffiths, T. A. M., Mauk, A. G. & MacGillivray, R. T. A. Recombinant expression and functional characterization of human hephaestin: a multicopper oxidase with ferroxidase activity. Biochemistry 44, 14725–14731 (2005).

    CAS  PubMed  Google Scholar 

  348. Hudson, D. M. et al. Human hephaestin expression is not limited to enterocytes of the gastrointestinal tract but is also found in the antrum, the enteric nervous system, and pancreatic β-cells. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G425–G432 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to K. Römhild for her assistance in the literature review. The authors' work is supported by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska–Curie grant agreement No 707229 (ADHERE) to B.J.C, the German Research Foundation (DFG: La2937/1-2 to T.L), the European Research Council (ERC: StG-309495, PoC-680882 to T.L), and the US National Institutes of Health grants R01 DK095112 and R01DK090554 to S.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart J. Crielaard.

Ethics declarations

Competing interests

S.R. has restricted stocks in, is a consultant for and a member of the scientific advisory board of Merganser Biotech. S.R. is also a consultant for Novartis Pharmaceuticals, Bayer Healthcare, and Keryx Biopharmaceuticals, and is a member of the scientific advisory board of Ionis Pharmaceuticals. T.L. is a member of the scientific advisory board of Cristal Therapeutics. B.J.C. declares no competing interests.

Related links

PowerPoint slides

Glossary

Microcytic, hypochromic anaemia

Low systemic haemoglobin levels associated with a reduced haemoglobin concentration inside each red blood cell, making them small (microcytic) and pale (hypochromic). This condition is most commonly caused by iron deficiency, but is also found in patients with red blood cell disorders such as thalassaemia.

Haemochromatosis

A family of hereditary diseases that are characterized by genetic mutations affecting an iron metabolism-regulating protein and resulting in excessive iron absorption. As there is no physiological mechanism for iron excretion, iron overload will eventually occur.

Anticalin

Technology developed by Pieris Pharmaceuticals that modifies lipocalins, which are natural extracellular proteins that bind to and transport a variety of ligands, to make therapeutics that target a specific molecule.

Spiegelmer

Technology developed by NOXXON Pharma that uses L-RNA aptamers as therapeutic agents that bind a specific molecule. L-RNA, the stereoisomeric form of physiological d-RNA, is not sensitive to nuclease activity and therefore has improved biological stability.

Kunitz domain

Or Kunitz-type protease inhibitor domain, is the active domain of various protease inhibitors. Their relatively short peptide sequence of ~60 amino acids makes them an interesting lead for the development new biopharmaceutical protease inhibitors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crielaard, B., Lammers, T. & Rivella, S. Targeting iron metabolism in drug discovery and delivery. Nat Rev Drug Discov 16, 400–423 (2017). https://doi.org/10.1038/nrd.2016.248

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2016.248

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research