Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Cancer cachexia: understanding the molecular basis

Abstract

Cancer cachexia is a devastating, multifactorial and often irreversible syndrome that affects around 50–80% of cancer patients, depending on the tumour type, and that leads to substantial weight loss, primarily from loss of skeletal muscle and body fat. Since cachexia may account for up to 20% of cancer deaths, understanding the underlying molecular mechanisms is essential. The occurrence of cachexia in cancer patients is dependent on the patient response to tumour progression, including the activation of the inflammatory response and energetic inefficiency involving the mitochondria. Interestingly, crosstalk between different cell types ultimately seems to result in muscle wasting. Some of the recent progress in understanding the molecular mechanisms of cachexia may lead to new therapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Main metabolic adaptations associated with tumour burden.
Figure 2: Skeletal muscle wasting during cachexia.
Figure 3: Browning of white adipose tissue in cachexia.
Figure 4: Cachexia as a multi-organ syndrome.

Similar content being viewed by others

References

  1. Evans, W. J. et al. Cachexia: a new definition. Clin. Nutr. 27, 793–799 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Fearon, K. et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 12, 489–495 (2011).

    Article  PubMed  Google Scholar 

  3. Argilés, J. M. et al. Consensus on cachexia definitions. J. Am. Med. Dir. Assoc. 11, 229–230 (2010).

    Article  PubMed  Google Scholar 

  4. Warren, S. The inmediate cause of death in cancer. Am. J. Med. Sci. 184, 610–613 (1932).

    Article  Google Scholar 

  5. Dewys, W. D. et al. Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern Cooperative Oncology Group. Am. J. Med. 69, 491–497 (1980).

    Article  CAS  PubMed  Google Scholar 

  6. Teunissen, S. C. C. M. et al. Symptom prevalence in patients with incurable cancer: a systematic review. J. Pain Symptom Manage. 34, 94–104 (2007).

    Article  PubMed  Google Scholar 

  7. Blum, D. et al. Validation of the Consensus-Definition for Cancer Cachexia and evaluation of a classification model—a study based on data from an international multicentre project (EPCRC-CSA). Ann. Oncol. 25, 1635–1642 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Blum, D. et al. Evolving classification systems for cancer cachexia: ready for clinical practice? Support Care Cancer 18, 273–279 (2010).

    Article  PubMed  Google Scholar 

  9. Bozzetti, F. & Mariani, L. Defining and classifying cancer cachexia: a proposal by the SCRINIO Working Group. JPEN. J. Parenter. Enteral Nutr. 33, 361–367.

  10. Vigano, A. L. et al. The Abridged Patient-Generated Subjective Global Assessment Is a Useful Tool for Early Detection and Characterization of Cancer Cachexia. J. Acad. Nutr. Diet. 114, 1088–1098 (2014).

    Article  PubMed  Google Scholar 

  11. Argilés, J. M. et al. The cachexia score (CASCO): a new tool for staging cachectic cancer patients. J. Cachexia. Sarcopenia Muscle 2, 87–93 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Busquets, S. et al. Staging cachectic cancer patients using the cachexia score (CASCO). Communication 3-03. Abstracts of the 7th cachexia conference, kobe/osaka, Japan, december 9–11, 2013. J. Cachexia. Sarcopenia Muscle 4, 295–343 (2013).

    Article  Google Scholar 

  13. Tisdale, M. J. Catabolic mediators of cancer cachexia. Curr. Opin. Support. Palliat. Care 2, 256–261 (2008).

    Article  PubMed  Google Scholar 

  14. Argilés, J. M., Busquets, S., Toledo, M. & López-Soriano, F. J. The role of cytokines in cancer cachexia. Curr. Opin. Support. Palliat. Care 3, 263–268 (2009).

    Article  PubMed  Google Scholar 

  15. Scheede-Bergdahl, C. et al. Is IL-6 the best pro-inflammatory biomarker of clinical outcomes of cancer cachexia? Clin. Nutr. 31, 85–88 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Punzi, T. et al. C-reactive protein levels and vitamin d receptor polymorphisms as markers in predicting cachectic syndrome in cancer patients. Mol. Diagn. Ther. 16, 115–124 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Weber, M.-A. et al. Myoglobin plasma level related to muscle mass and fiber composition: a clinical marker of muscle wasting? J. Mol. Med. 85, 887–896 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Argilés, J. M. et al. Targets in clinical oncology: the metabolic environment of the patient. Front. Biosci. 12, 3024–3051 (2007).

    Article  PubMed  Google Scholar 

  19. Evans, W. K. et al. Limited impact of total parenteral nutrition on nutritional status during treatment for small cell lung cancer. Cancer Res. 45, 3347–3353 (1985).

    CAS  PubMed  Google Scholar 

  20. Constantinou, C. et al. Nuclear magnetic resonance in conjunction with functional genomics suggests mitochondrial dysfunction in a murine model of cancer cachexia. Int. J. Mol. Med. 27, 15–24 (2011).

    CAS  PubMed  Google Scholar 

  21. Sanders, P. M. & Tisdale, M. J. Effect of zinc-α2-glycoprotein (ZAG) on expression of uncoupling proteins in skeletal muscle and adipose tissue. Cancer Lett. 212, 71–81 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Busquets, S. et al. Activation of UCPs gene expression in skeletal muscle can be independent on both circulating fatty acids and food intake. Involvement of ROS in a model of mouse cancer cachexia. FEBS Lett. 579, 717–722 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Collins, P., Bing, C., McCulloch, P. & Williams, G. Muscle UCP-3 mRNA levels are elevated in weight loss associated with gastrointestinal adenocarcinoma in humans. Br. J. Cancer 86, 372–375 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tzika, A. A. et al. Skeletal muscle mitochondrial uncoupling in a murine cancer cachexia model. Int. J. Oncol. 43, 886–894 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Antunes, D. et al. Molecular insights into mitochondrial dysfunction in cancer-related muscle wasting. Biochim. Biophys. Acta 1841, 896–905 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Fermoselle, C. et al. Mitochondrial dysfunction and therapeutic approaches in respiratory and limb muscles of cancer cachectic mice. Exp. Physiol. 98, 1349–1365 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Shum, A. M. et al. Disruption of MEF2C signaling and loss of sarcomeric and mitochondrial integrity in cancer-induced skeletal muscle wasting. Aging (Albany NY) 4, 133–143 (2012).

    Article  CAS  Google Scholar 

  28. Padrão, A. I. et al. Bladder cancer-induced skeletal muscle wasting: disclosing the role of mitochondria plasticity. Int. J. Biochem. Cell Biol. 45, 1399–1409 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Fuster, G. et al. Are peroxisome proliferator-activated receptors involved in skeletal muscle wasting during experimental cancer cachexia? Role of β2-adrenergic agonists. Cancer Res. 67, 6512–6519 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Kang, C., Chung, E., Diffee, G. & Ji, L. L. Exercise training attenuates aging-associated mitochondrial dysfunction in rat skeletal muscle: role of PGC-1α. Exp. Gerontol. 48, 1343–1350 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Puigserver, P. et al. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARγ coactivator-1. Mol. Cell 8, 971–982 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Miura, S. et al. Overexpression of peroxisome proliferator-activated receptor γ co-activator-1α leads to muscle atrophy with depletion of ATP. Am. J. Pathol. 169, 1129–1139 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dirksen, R. T. Sarcoplasmic reticulum-mitochondrial through-space coupling in skeletal muscle. Appl. Physiol. Nutr. Metab. 34, 389–395 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rossi, A. E., Boncompagni, S. & Dirksen, R. T. Sarcoplasmic reticulum-mitochondrial symbiosis: bidirectional signaling in skeletal muscle. Exerc. Sport Sci. Rev. 37, 29–35 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fontes-Oliveira, C. C. et al. Mitochondrial and sarcoplasmic reticulum abnormalities in cancer cachexia: Altered energetic efficiency? Biochim. Biophys. Acta 1830, 2770–2778 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Zorzano, A. Regulation of mitofusin-2 expression in skeletal muscle. Appl. Physiol. Nutr. Metab. 34, 433–439 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Cosper, P. F. & Leinwand, L. A. Myosin heavy chain is not selectively decreased in murine cancer cachexia. Int. J. Cancer 130, 2722–2727 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Martin, L. et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J. Clin. Oncol. 31, 1539–1547 (2013).

    Article  PubMed  Google Scholar 

  39. Fearon, K., Arends, J. & Baracos, V. Understanding the mechanisms and treatment options in cancer cachexia. Nature Rev. Clin. Oncol. 10, 90–99 (2013).

    Article  CAS  Google Scholar 

  40. Le Bricon, T., Gugins, S., Cynober, L. & Baracos, V. E. Negative impact of cancer chemotherapy on protein metabolism in healthy and tumor-bearing rats. Metabolism. 44, 1340–1348 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Argilés, J. M. & López-Soriano, F. J. The ubiquitin-dependent proteolytic pathway in skeletal muscle: its role in pathological states. Trends Pharmacol. Sci. 17, 223–226 (1996).

    Article  PubMed  Google Scholar 

  42. Hasselgren, P.-O., Wray, C. & Mammen, J. Molecular regulation of muscle cachexia: it may be more than the proteasome. Biochem. Biophys. Res. Commun. 290, 1–10 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Smith, I. J. et al. Calpain activity is increased in skeletal muscle from gastric cancer patients with no or minimal weight loss. Muscle Nerve 43, 410–414 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Tardif, N., Klaude, M., Lundell, L., Thorell, A. & Rooyackers, O. Autophagic-lysosomal pathway is the main proteolytic system modified in the skeletal muscle of esophageal cancer patients. Am. J. Clin. Nutr. 98, 1485–1492 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Krawiec, B. J., Frost, R. A., Vary, T. C., Jefferson, L. S. & Lang, C. H. Hindlimb casting decreases muscle mass in part by proteasome-dependent proteolysis but independent of protein synthesis. Am. J. Physiol. Endocrinol. Metab. 289, E969–E980 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Mammucari, C. et al. FOXO3 controls autophagy in skeletal muscle in vivo. Cell. Metab. 6, 458–471 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Egerman, M. A. & Glass, D. J. Signaling pathways controlling skeletal muscle mass. Crit. Rev. Biochem. Mol. Biol. 49, 59–68.

  48. Glass, D. J. Signaling pathways perturbing muscle mass. Curr. Opin. Clin. Nutr. Metab. Care 13, 225–229 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Clarke, B. A. et al. The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell. Metab. 6, 376–385 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Cohen, S. et al. During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J. Cell Biol. 185, 1083–1095 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cai, D. et al. IKKβ/NF-κB activation causes severe muscle wasting in mice. Cell 119, 285–298 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Moore-Carrasco, R. et al. The AP-1/NF-κB double inhibitor SP100030 can revert muscle wasting during experimental cancer cachexia. Int. J. Oncol. 30, 1239–1245 (2007).

    CAS  PubMed  Google Scholar 

  53. He, W. A. et al. NF-κB-mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia. J. Clin. Invest. 123, 4821–4835 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rommel, C. et al. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/AKT/mTOR and PI(3)K/AKT/GSK3 pathways. Nature Cell Biol. 3, 1009–1013 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Sandri, M. et al. FOXO transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117, 399–412 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Argilés, J. M., Orpí, M., Busquets, S. & López-Soriano, F. J. Myostatin: more than just a regulator of muscle mass. Drug Discov. Today 17, 702–709 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Hitachi, K. & Tsuchida, K. Role of microRNAs in skeletal muscle hypertrophy. Front. Physiol. 4, 408 (2013).

    PubMed  Google Scholar 

  58. He, W. A. et al. Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7. Proc. Natl Acad. Sci. USA 111, 4525–4529 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kulyté, A. et al. MicroRNA profiling links miR-378 to enhanced adipocyte lipolysis in human cancer cachexia. Am. J. Physiol. Endocrinol. Metab. 306, E267–E274 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Argilés, J. M., López-Soriano, J., Almendro, V., Busquets, S. & López-Soriano, F. J. Cross-talk between skeletal muscle and adipose tissue: a link with obesity? Med. Res. Rev. 25, 49–65 (2005).

    Article  PubMed  Google Scholar 

  61. Dalamaga, M. Interplay of adipokines and myokines in cancer pathophysiology: Emerging therapeutic implications. World J. Exp. Med. 3, 26–33 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Argilés, J. M., López-Soriano, F. J. & Busquets, S. Mechanisms to explain wasting of muscle and fat in cancer cachexia. Curr. Opin. Support. Pal. Care. 1, 293–298 (2007).

    Article  Google Scholar 

  63. Das, S. K. et al. Adipose triglyceride lipase contributes to cancer-associated cachexia. Science. 333, 233–238 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Stephens, N. A. et al. Intramyocellular lipid droplets increase with progression of cachexia in cancer patients. J. Cachexia. Sarcopenia Muscle 2, 111–117 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Petruzzelli, M. et al. A Switch from White to Brown Fat Increases Energy Expenditure in Cancer-Associated Cachexia. Cell. Metab. 20, 433–447 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Kir, S. et al. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature. 513, 100–104 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tsoli, M. et al. Activation of thermogenesis in brown adipose tissue and dysregulated lipid metabolism associated with cancer cachexia in mice. Cancer Res. 72, 4372–4382 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Bing, C. et al. Increased gene expression of brown fat uncoupling protein (UCP)1 and skeletal muscle UCP2 and UCP3 in MAC16-induced cancer cachexia. Cancer Res. 60, 2405–2410 (2000).

    CAS  PubMed  Google Scholar 

  69. Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Bauwens, M. et al. Molecular imaging of brown adipose tissue in health and disease. Eur. J. Nucl. Med. Mol. Imaging 41, 776–791 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Argiles, J. M., Lopez-Soriano, F. J. & Busquets, S. Counteracting inflammation: a promising therapy in cachexia. Crit. Rev. Oncog. 17, 253–262 (2012).

    Article  PubMed  Google Scholar 

  72. Klein, G. L., Petschow, B. W., Shaw, A. L. & Weaver, E. Gut barrier dysfunction and microbial translocation in cancer cachexia: a new therapeutic target. Curr. Opin. Support. Palliat. Care 7, 361–367 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tisdale, M. J. Are tumoral factors responsible for host tissue wasting in cancer cachexia? Future Oncol. 6, 503–513 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Chen, J. L. et al. Elevated expression of activins promotes muscle wasting and cachexia. FASEB J. 28, 1711–1723 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Lokireddy, S. et al. Myostatin is a novel tumoral factor that induces cancer cachexia. Biochem. J. 446, 23–36 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Zhou, X. et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 142, 531–543 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Busquets, S. et al. Myostatin blockage using actRIIB antagonism in mice bearing the Lewis lung carcinoma results in the improvement of muscle wasting and physical performance. J. Cachexia. Sarcopenia Muscle 3, 37–43 (2012).

    Article  PubMed  Google Scholar 

  78. Braun, T. P. et al. Cancer- and endotoxin-induced cachexia require intact glucocorticoid signaling in skeletal muscle. FASEB J. 27, 3572–3582 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Molfino, A., Laviano, A. & Rossi Fanelli, F. Contribution of anorexia to tissue wasting in cachexia. Curr. Opin. Support Palliat Care 4, 249–253 (2010).

    Article  PubMed  Google Scholar 

  80. McGreevy, J. et al. Characteristics of taste and smell alterations reported by patients after starting treatment for lung cancer. Support. Care Cancer 22, 2635–2644 (2014).

    Article  PubMed  Google Scholar 

  81. Ramos, E. J. B. et al. Cancer anorexia-cachexia syndrome: cytokines and neuropeptides. Curr. Opin. Clin. Nutr. Metab. Care 7, 427–434 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Suzuki, H., Asakawa, A., Amitani, H., Nakamura, N. & Inui, A. Cancer cachexia—pathophysiology and management. J. Gastroenterol. 48, 574–594 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Prado, C. M. M., Antoun, S., Sawyer, M. B. & Baracos, V. E. Two faces of drug therapy in cancer: drug-related lean tissue loss and its adverse consequences to survival and toxicity. Curr. Opin. Clin. Nutr. Metab. Care 14, 250–254 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Oberholzer, R. et al. Psychosocial effects of cancer cachexia: a systematic literature search and qualitative analysis. J. Pain Symptom Manage. 46, 77–95 (2013).

    Article  PubMed  Google Scholar 

  85. Joppa, M. A., Gogas, K. R., Foster, A. C. & Markison, S. Central infusion of the melanocortin receptor antagonist agouti-related peptide (AgRP(83-132)) prevents cachexia-related symptoms induced by radiation and colon-26 tumors in mice. Peptides 28, 636–642 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Cheung, W. W. & Mak, R. H. Melanocortin antagonism ameliorates muscle wasting and inflammation in chronic kidney disease. Am. J. Physiol. Renal Physiol. 303, F1315–F1324 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bindels, L. B. et al. Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model. PLoS ONE 7, e37971 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bindels, L. B. & Delzenne, N. M. Muscle wasting: the gut microbiota as a new therapeutic target? Int. J. Biochem. Cell Biol. 45, 2186–2190 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Watanabe, M. et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439, 484–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Wang, H. S., Oh, D. S., Ohning, G. V. & Pisegna, J. R. Elevated serum ghrelin exerts an orexigenic effect that may maintain body mass index in patients with metastatic neuroendocrine tumors. J. Mol. Neurosci. 33, 225–231 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kerem, M. et al. Adipokines and ghrelin in gastric cancer cachexia. World J. Gastroenterol. 14, 3633–3641 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Takahashi, M. et al. Ghrelin and leptin levels in cachectic patients with cancer of the digestive organs. Int. J. Clin. Oncol. 14, 315–320 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Karapanagiotou, E. M. et al. Increased serum levels of ghrelin at diagnosis mediate body weight loss in non-small cell lung cancer (NSCLC) patients. Lung Cancer 66, 393–398 (2009).

    Article  PubMed  Google Scholar 

  94. Sheriff, S. et al. Des-acyl ghrelin exhibits pro-anabolic and anti-catabolic effects on C2C12 myotubes exposed to cytokines and reduces burn-induced muscle proteolysis in rats. Mol. Cell. Endocrinol. 351, 286–295 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Reano, S., Graziani, A. & Filigheddu, N. Acylated and unacylated ghrelin administration to blunt muscle wasting. Curr. Opin. Clin. Nutr. Metab. Care 17, 236–240 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Yu, A. P. et al. Acylated and unacylated ghrelin inhibit doxorubicin-induced apoptosis in skeletal muscle. Acta Physiol. 211, 201–213 (2014).

    Article  CAS  Google Scholar 

  97. Roxburgh, C. S. & McMillan, D. C. Role of systemic inflammatory response in predicting survival in patients with primary operable cancer. Futur. Oncol. 6, 149–163 (2010).

    Article  CAS  Google Scholar 

  98. Proctor, M. J. et al. An inflammation-based prognostic score (mGPS) predicts cancer survival independent of tumour site: a Glasgow Inflammation Outcome Study. Br. J. Cancer 104, 726–734 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dumas, J. F. et al. Efficiency of oxidative phosphorylation in liver mitochondria is decreased in a rat model of peritoneal carcinosis. J. Hepatol. 54, 320–327 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Eschenhagen, T. et al. Cardiovascular side effects of cancer therapies: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 13, 1–10 (2011).

    Article  PubMed  Google Scholar 

  101. Olivan, M. et al. Theophylline is able to partially revert cachexia in tumour-bearing rats. Nutr. Metab. 9, 76 (2012).

    Article  CAS  Google Scholar 

  102. Tian, M. et al. Cardiac alterations in cancer-induced cachexia in mice. Int. J. Oncol. 37, 347–353 (2010).

    CAS  PubMed  Google Scholar 

  103. Drott, C. & Lundholm, K. Glucose uptake and amino acid metabolism in perfused hearts from tumor-bearing rats. J. Surg. Res. 49, 62–68 (1990).

    Article  CAS  PubMed  Google Scholar 

  104. Mühlfeld, C. et al. Cancer induces cardiomyocyte remodeling and hypoinnervation in the left ventricle of the mouse heart. PLoS ONE. 6, e20424 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hyltander, A., Drott, C., Körner, U., Sandström, R. & Lundholm, K. Elevated energy expenditure in cancer patients with solid tumours. Eur. J. Cancer. 27, 9–15 (1991).

    Article  CAS  PubMed  Google Scholar 

  106. Isenring, E. A. & Teleni, L. Nutritional counseling and nutritional supplements: a cornerstone of multidisciplinary cancer care for cachectic patients. Curr. Opin. Support. Palliat. Care 7, 390–395 (2013).

    Article  PubMed  Google Scholar 

  107. Currow, D. C. & Abernethy, A. P. Anamorelin hydrochloride in the treatment of cancer anorexia-cachexia syndrome. Future Oncol. 10, 789–802 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Dalton, J. T., Taylor, R. P., Mohler, M. L. & Steiner, M. S. Selective androgen receptor modulators for the prevention and treatment of muscle wasting associated with cancer. Curr. Opin. Support. Palliat. Care 7, 345–351 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Ministerio de Ciencia yTecnología (SAF-26091-2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep M. Argilés.

Ethics declarations

Competing interests

J.M.A.: Companies' Advisor 2003- Board of Advisors, Danone Research 2005- Board of Advisors, ANECA (National Agency for Evaluation of University Professors); also, on a non-regular basis, an advisor for: Novartis (Switzerland), Par Pharmaceuticals (USA), Sacoor Medical Group (UK), Amgen (USA) and Merck, Sharp and Dohme (USA), Abbott Pharmaceuticals (USA). S.B., B.S. and F.J.L.-S. declare no competing interests.

PowerPoint slides

Glossary

Adipokines

Cytokines that are released by adipose tissue cells.

Asthenia

From the Greek, a stenos, meaning 'without force'; loss of muscle force.

Brown adipose tissue

(BAT; also known as brown fat). One of two types of fat or adipose tissue (the other being white adipose tissue (also known as white fat)) found in mammals. Its primary function is to generate body heat, being responsible for the so-called non-shivering thermogenesis.

Calcium release units

Specialized junctional domains of the sarcoplasmic reticulum that bear calcium release channels, also known as ryanoidine receptors.

Glycaemia

Blood glucose levels.

Ghrelin resistance

Reduced effects of ghrelin, in spite of high circulating levels of the molecule.

Myokines

Cytokines that are released by skeletal muscle.

Sarcomere

From the Greek sarx (flesh) and meros (part), it represents the basic muscle. Sarcomeres are composed of long, fibrous proteins that slide past each other when the muscles contract and relax.

Total parenteral nutrition

Intravenous artificial nutrition without oral ingestion.

White adipose tissue

(WAT; also known as white fat). WAT is used as a store of energy in the form of triacylglycerols. It may account for up to 25% of body weight in healthy humans.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argilés, J., Busquets, S., Stemmler, B. et al. Cancer cachexia: understanding the molecular basis. Nat Rev Cancer 14, 754–762 (2014). https://doi.org/10.1038/nrc3829

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3829

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer