Skip to main content
Log in

Cirrhotic cardiomyopathy

  • REVIEW ARTICLE
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

Cirrhotic cardiomyopathy is a recently recognized condition in cirrhosis consisting of systolic incompetence under condition of stress, diastolic dysfunction related to altered diastolic relaxation, and electrophysiological abnormalities in the absence of any known cardiac disease. It can be diagnosed by using a combination of electrocardiograph, 2-dimensional echocardiography, and various serum markers such as brain natriuretic factor. The underlying pathogenetic mechanisms include abnormalities in the β-adrenergic signaling pathway, altered cardiomyocyte membrane fluidity, increased myocardial fibrosis, cardiomyocyte hypertrophy, and ion channel defects. Various compounds for which levels are elevated in cirrhosis such as nitric oxide and carbon monoxide can also exert a negative inotropic effect on the myocardium, whereas excess sodium and volume retention can lead to myocardial hypertrophy. Various toxins can also aggravate the ion channel defects, thereby widening the QRS complex causing prolonged QT intervals. Clinically, systolic incompetence is most evident when cirrhotic patients are placed under stress, whether physical or pharmacological, or when the extent of peripheral arterial vasodilatation demands an increased cardiac output as in the case of bacterial infections. Acute volume overload such as immediately after insertion of a transjugular intrahepatic portosystemic shunt or after liver transplantation can also tip these cirrhotic patients into cardiac failure. Treatment of cirrhotic cardiomyopathy is unsatisfactory. There is some evidence that β-blockade may help some cirrhotic patients with baseline prolonged QT interval. Long-term aldosterone antagonism may help reduce myocardial hypertrophy. Future studies should include further elucidation of pathogenetic mechanisms so as to develop effective treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kowalski HJ, Abelmann WH. The cardiac output at rest in Laennec cirrhosis. J Clin Invest 1953;32:1025–1033

    Article  PubMed  CAS  Google Scholar 

  2. Rayes N, Bechstein WO, Keck H, Blumhardt G, Lohmann R, Neuhaus P. Causes of death after liver transplantation: an analysis of 41 cases in 382 patients. Zentralblatt Chir 1995;120:435–438

    CAS  Google Scholar 

  3. Lebrec D, Giuily N, Hadenque A, Vilgrain V, Moreau R, Poynard T, et al. Transjugular intrahepatic portosystemic shunt: comparison with paracentesis in patients with cirrhosis and refractory ascites: a randomized trial. J Hepatology 1996;25:135–144

    Article  CAS  Google Scholar 

  4. Franco D, Vons C, Traynor O, de Smadja C. Should portocaval shunt be reconsidered in the treatment of intractable ascites in cirrhosis? Arch Surg 1988;123:987–991

    PubMed  CAS  Google Scholar 

  5. Laffi G, Barletta G, La Villa G, Del Bene R, Riccardi D, Ticali P, et al. Altered cardiovascular responsiveness to active tilting in nonalcoholic cirrhosis. Gastroenterology 1997;113:891–898

    Article  PubMed  CAS  Google Scholar 

  6. Wong F, Girgrah N, Graba J, Allidina Y, Liu P, Blendis L. The effect of cirrhotic cardiomyopathy on the cardiac response to exercise in cirrhosis. Gut 2001;49:268–275

    Article  PubMed  CAS  Google Scholar 

  7. Bernardi M, Rubboli A, Trevisani F, Cancellieri C, Ligabue A, Baraldini M, et al. Reduced cardiovascular responsiveness to exercise-induced sympathoadrenergic stimulation in patients with cirrhosis. J Hepatol 1991;12:207–216

    Article  PubMed  CAS  Google Scholar 

  8. Moreau R, Hadengue A, Soupison T, Mechin G, Assous M, Roche-Sicot J, et al. Abnormal pressor response to vasopressin in patients with cirrhosis: evidence for impaired buffering mechanism. Hepatology 1990;12:7–12

    Article  PubMed  CAS  Google Scholar 

  9. Wong F, Liu P, Lilly L, Bomzon A, Blendis L. The role of cardiac structural and functional abnormalities in the pathogenesis of hyperdynamic circulation and renal sodium retention in cirrhosis. Clin Sci 1999;97:259–267

    Article  PubMed  CAS  Google Scholar 

  10. Pozzi M, Carugo S, Boari G, Pecci V, de Ceglia S, Maggiolini S, et al. Functional and structural cardiac abnormalities in cirrhotic patients with and without ascites. Hepatology 1997;26:1131–1137

    PubMed  CAS  Google Scholar 

  11. Finucci G, Desideri A, Sacerdoti D, Bolognesi M, Merkel C, Angeli P, et al. Left ventricular diastolic dysfunction in liver cirrhosis. Scan J Gastroenterol 1996;31:279–284

    Article  CAS  Google Scholar 

  12. Bernardi M, Calandra S, Colantoni A, Trevisani F, Raimondo ML, Sica G, et al. QT interval prolongation in cirrhosis: prevalence, relationship with severity, and etiology of the disease and possible pathogenetic factors. Hepatology 1998;27:28–34

    Article  PubMed  CAS  Google Scholar 

  13. Kosar F, Ates F, Sahin I, Karincaoglu M, Yildirim B. QT interval analysis in patients with chronic liver disease: a prospective study. Angiology 2007;58:218–224

    Article  PubMed  Google Scholar 

  14. Zambruni A, Trevisani F, Caraceni P, Bernardi M. Cardiac electrophysiological abnormalities in patients with cirrhosis. J Hepatol 2006;44:994–1002

    Article  PubMed  CAS  Google Scholar 

  15. Lee SS. Cardiac abnormalities in liver cirrhosis. West J Med 1989;151:530–539

    PubMed  CAS  Google Scholar 

  16. Ingles AC, Hernandez I, Garcia-Estan J, Quesada T, Carbonell LF. Limited cardiac preload reserve in conscious cirrhotic rats. Am J Physiol 1991;260:H1912–H1917

    PubMed  CAS  Google Scholar 

  17. Caramelo C, Fernandez-Munoz D, Santos JC, Blanchart A, Rodriguez-Puyol D, López-Novoa JM, et al. Effect of volume expansion on hemodynamics, capillary permeability and renal function in conscious, cirrhotic rats. Hepatology 1986;6:129–134

    Article  PubMed  CAS  Google Scholar 

  18. Castro A, Jimenez W, Claria J, Ros J, Martinez JM, Bosch M, et al. Impaired responsiveness to angiotensin-II in experimental cirrhosis: role of nitric oxide. Hepatology 1993;18:367–372

    PubMed  CAS  Google Scholar 

  19. Polio J, Sieber CC, Lerner E, Groszmann RJ. Cardiovascular hyporesponsiveness to norepinephrine, propranolol and nitroglycerin in portal-hypertensive and aged rats. Hepatology 1993;18:128–136

    PubMed  CAS  Google Scholar 

  20. Weissler AM. Current concepts in cardiology: systolic time intervals. N Engl J Med 1977;296:321–324

    PubMed  CAS  Google Scholar 

  21. Grose RD, Nolan J, Dillon JF, Errington M, Hannan WJ, Bouchier IAD, et al. Exercise-induced left ventricular dysfunction in alcoholic and non-alcoholic cirrhosis. J Hepatology 1995;22:326–332

    Article  CAS  Google Scholar 

  22. Sagawa K, Suga H, Shoukas A, Bakalar KM. End-systolic pressure/volume ratio: a new index of ventricular contractility. Am J Cardiol 1997;40:748–753

    Article  Google Scholar 

  23. Lunzer MR, Newman SP, Bernard AG, Manghani KK, Sherlock SP, Ginsburg J. Impaired cardiovascular responsiveness in liver disease. Lancet 1975;2:382–385

    Article  PubMed  CAS  Google Scholar 

  24. Decaux G, Cauchie P, Soupart A, Kruger M, Delwiche F. Role of vagal neuropathy in the hyponatraemia of alcoholic cirrhosis. Br Med J 1986;293:1534–1536

    Article  CAS  Google Scholar 

  25. Henriksen JH, Fuglsang S, Bendtsen F, Christensen E, Moller S. Dyssynchronous electrical and mechanical systole in patients with cirrhosis. J Hepatol 2002;36:513–520

    Article  PubMed  Google Scholar 

  26. Henriksen JH, Gotze JP, Fuglsang S, Christensen E, Bendtsen F, Moller S. Increased circulating pro-brain natriuretic peptide (proBNP) and brain natriuretic peptide (BNP) in patients with cirrhosis: relation to cardiovascular dysfunction and severity of disease. Gut 2003;52:1511–1517

    Article  PubMed  CAS  Google Scholar 

  27. La Villa G, Romanelli RG, Casini Raggi V, Tosti-Guerra C, De Feo ML, Marra F, et al. Plasma levels of brain natriuretic peptide in patients with cirrhosis. Hepatology 1992;16:156–161

    Article  PubMed  CAS  Google Scholar 

  28. Wong F, Siu S, Liu P, Blendis L. Brain natriuretic peptide, is it a predictor of cardiomyopathy in cirrhosis? Clin Sci 2001;101:651–657

    Article  Google Scholar 

  29. Iwao T, Oho K, Nakano R, Sakai T, Sato M, Miyamoto Y, et al. High plasma cardiac natriuretic peptides associated with enhanced cyclic guanosine monophosphate production in preascitic cirrhosis. J Hepatol 2000;32:426–433

    Article  PubMed  CAS  Google Scholar 

  30. Yildiz R, Yildirim B, Karincaoglu M, Harputluoglu M, Hilmioglu F. Brain natriuretic peptide and severity of disease in non-alcoholic cirrhotic patients. J Gastroenterol Hepatol 2005;20:1115–1120

    PubMed  CAS  Google Scholar 

  31. Bodor GS, Porter S, Landt Y, Ladenson JH. Development of monoclonal antibodies for an assay of cardiac troponin-I and preliminary results in suspected cases of myocardial infarction. Clin Chem 1992;38:2203–2214

    PubMed  CAS  Google Scholar 

  32. Pateron D, Beyne P, Laperche T, Logeard D, Lefilliatre P, Sogni P, et al. Elevated circulating cardiac troponin I in patients with cirrhosis. Hepatology 1999;29:640–643

    Article  PubMed  CAS  Google Scholar 

  33. Parkes DG. Cardiovascular actions of adrenomedullin in conscious sheep. Am J Physiol 1995;268:H2574–H2578

    PubMed  CAS  Google Scholar 

  34. Ikenouchi H, Kangawa K, Matsuo H, Hirata Y. Negative inotropic effects of adrenomedullin in isolated adult rabbit cardiac ventricular myocytes. Circulation 1997;95:2318–2324

    PubMed  CAS  Google Scholar 

  35. Szokodi I, Kinnunen P, Tavi P, Weckstrom M, Toth M, Zruskoaho H. Evidence of adrenomedullin, a new inotropic peptide. Circulation 1998;97:1062–1070

    PubMed  CAS  Google Scholar 

  36. Guevara M, Gines P, Jimenez W, Sort P, Fernandez-Esparrach G, Escorsell A, et al. Increased adrenomedullin levels in cirrhosis: relationship with hemodynamic abnormalities and vasoconstrictor systems. Gastroenterology 1998;114:336–343

    Article  PubMed  CAS  Google Scholar 

  37. Genesca J, Gonzalez A, Catalan R, Segura R, Martinez M, Esteban R, et al. Adrenomedullin, a vasodilator peptide implicated in hemodynamic alterations of liver cirrhosis. Relationship to nitric oxide. Dig Dis Sci 1999;44:372–376

    Article  PubMed  CAS  Google Scholar 

  38. Jougasaki M, Wei CM, McKinley LJ, Burnett JCJ. Elevation of circulating and ventricular adrenomedullin in human congestive heart failure. Circulation 1995;92:286–289

    PubMed  CAS  Google Scholar 

  39. Kobayashi K, Kitamura K, Etoh T, Nagatomo Y, Takenaga M, Ishikawa T, et al. Increased plasma adrenomedullin levels in chronic congestive heart failure. Am Heart J 1996;131:994–998

    Article  PubMed  CAS  Google Scholar 

  40. Hirano S, Imamura T, Matsuo T, Ishiyama Y, Kato J, Kitamura K, et al. Differential responses of circulating and tissue adrenomedullin and gene expression to volume overload. J Card Fail 2000;6:120–129

    Article  PubMed  CAS  Google Scholar 

  41. Pan CS, Jin SJ, Cao CQ, Zhao J, Zhang J, Wang X, et al. The myocardial response to adrenomedullin involves increased cAMP generation as well as augmented Akt phosphorylation. Peptides 2007;28:900–909

    Article  PubMed  CAS  Google Scholar 

  42. Ishimitsu T, Ono H, Minami J, Matsuoka H. Pathophysiologic and therapeutic implications of adrenomedullin in cardiovascular disorders. Pharmacol Ther 2006;111:909–927

    Article  PubMed  CAS  Google Scholar 

  43. Møller S, Henriksen JH. Cardiovascular complications of cirrhosis. Gut 2008;57:268–278

    Article  PubMed  CAS  Google Scholar 

  44. Xiao RP, Cheng H, Zhou YY, Kuschel M, Lakatta EG. Recent advances in cardiac beta-adrenergic signal transduction. Circ Res 1999;85:1092–1100

    PubMed  CAS  Google Scholar 

  45. Alqahtani SA, Fouad TR, Lee SS. Cirrhotic cardiomyopathy. Sem Liver Dis 2008;28:59–69

    Article  CAS  Google Scholar 

  46. Ma Z, Lee SS, Meddings JB. Effects of altered cardiac membrane fluidity on beta-adrenergic receptor signalling in rats with cirrhotic cardiomyopathy. J Hepatol 1997;26:904–912

    Article  PubMed  CAS  Google Scholar 

  47. Ma Z, Miyamoto A, Lee SS. Role of altered beta-adrenoceptor signal transduction in the pathogenesis of cirrhotic cardiomyopathy in rats. Gastroenterology 1996;110:1191–1198

    Article  PubMed  CAS  Google Scholar 

  48. Caraceni P, Domenicali M, Bernardi M. The endocannabinoid system and liver diseases. J Neuroendocrinol 2008;20(Suppl 1):47–52

    Article  PubMed  CAS  Google Scholar 

  49. Gaskari SE, Liu H, Moezi L, Li Y, Baik SK, Lee SS. Role of endocannabinoids in the pathogenesis of cirrhotic cardiomyopathy in bile duct ligated rats. Br J Pharmacol 2005;146:315–323

    Article  PubMed  CAS  Google Scholar 

  50. Batkai S, Mukhopadhyay P, Harvey-White J, Kekrid R, Pacher P, Kunos G. Endocannabinoids acting at CB1 receptors mediate the cardiac contractile dysfunction in vivo in cirrhotic rats. Am J Physiol Heart Circ Physiol 2007;293:H1689–H1695

    Article  PubMed  CAS  Google Scholar 

  51. Liu H, Ma Z, Lee SS. Contribution of nitric oxide to the pathogenesis of cirrhotic cardiomyopathy in bile duct-ligated rats. Gastroenterology 2000;118:937–944

    Article  PubMed  CAS  Google Scholar 

  52. Liu H, Song D, Lee SS. Role of heme oxygenase-carbon monoxide pathway in pathogenesis of cirrhotic cardiomyopathy in the rat. Am J Physiol Gastrointest Liver Physiol 2001;280:G68–G74

    PubMed  CAS  Google Scholar 

  53. Liu H, Lee SS. Nuclear factor-kappaB inhibition improves myocardial contractility in rats with cirrhotic cardiomyopathy. Liver Int 2008;28:640–648

    PubMed  CAS  Google Scholar 

  54. Piper RD. Myocardial dysfunction in sepsis. Clin Exp Pharmacol Physiol 1998;25:951–954

    Article  PubMed  CAS  Google Scholar 

  55. Lunseth JH, Olmstead EG, Abboud F. A study of heart disease in one hundred eight hospitalized patients dying with portal cirrhosis. Arch Intern Med 1958;102:405–413

    CAS  Google Scholar 

  56. Fields NG, Yuan B, Leenen FHH. NaCl-induced cardiac hypertrophy: cardiac sympathetic activity versus volume load. Circ Res 1991;68:745–755

    PubMed  CAS  Google Scholar 

  57. Kihara M, Utagawa N, Mano Y, Horie R, Yamori Y. Biochemical aspects of salt-induced, pressure-independent left ventricular hypertrophy in rats. Heart Vessel 1985;1:212–215

    Article  CAS  Google Scholar 

  58. Meggs LG, Ben-Ari J, Gammon D, Goodman AI. Myocardial hypertrophy: the effects of sodium and the role of sympathetic nervous activity. Am J Hypertens 1988;1:1–11

    Google Scholar 

  59. Leenen FHH, Yuan B. Dietary-sodium-induced cardiac remodeling in spontaneously hypertensive rat versus Wistar-Kyoto rat. J Hypertens 1998;16:885–892

    Article  PubMed  CAS  Google Scholar 

  60. Yoshimoto T, Hirata Y. Aldosterone as a cardiovascular risk hormone. Endocr J 2007;54:359–370

    Article  PubMed  CAS  Google Scholar 

  61. Weber KT, Sun Y, Tyagi SC, Cleutjens JP. Collagen network of the myocardium: function, structural remodeling and regulatory mechanisms. J Mol Cell Cardiol 1994;26:279–292

    Article  PubMed  CAS  Google Scholar 

  62. van Wamel AJ, Ruwhof C, van der Valk-Kokshoom LE, Schrier PI, van der Laarse A. The role of angiotensin II endothelin-1 and transforming growth factor-beta as autocrine/paracrine mediators of stretch-induced cardiomyocyte hypertrophy. Mol Cell Biochem 2001;218:113–124

    Article  PubMed  Google Scholar 

  63. Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Hiroi Y, et al. Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy. J Biol Chem 1996;271:3221–3228

    Article  PubMed  CAS  Google Scholar 

  64. Schmieder RE. Salt intake is related to the process of myocardial hypertrophy in essential hypertension. JAMA 1989;262:1187–1188

    Article  PubMed  CAS  Google Scholar 

  65. Raizada V, Skipper B, Luo W, Griffith J. Intracardiac and intrarenal renin-angiotensin systems: mechanisms of cardiovascular and renal effects. J Investig Med 2007;55:341–359

    Article  PubMed  CAS  Google Scholar 

  66. Dostal DE, Hunt RA, Kule CE, Bhat GJ, Karoor V, McWhinney CD, et al. Molecular mechanisms of angiotensin II in modulating cardiac function: intracardiac effects and signal transduction pathways. J Mol Cell Cardiol 1997;29:2893–2902

    Article  PubMed  CAS  Google Scholar 

  67. Booz GW, Dostal DE, Baker KM. Paracrine actions of cardiac fibroblasts on cardiomyocytes: implications for the cardiac renin-angiotensin system. Am J Cardiol 1999;83:44H–47H

    Article  PubMed  CAS  Google Scholar 

  68. Zierhut W, Zimmer HG. Significance of myocardial α- and β-adrenoreceptors in catecholamine induced cardiac hypertrophy. Circ Res 1989;65:1417–1425

    PubMed  CAS  Google Scholar 

  69. Dostal DE, Baker KM. Angiotensin and endothelin: messengers that couple ventricular stretch to the Na+/H+ exchanger and cardiac hypertrophy. Circ Res 1998;83:870–873

    PubMed  CAS  Google Scholar 

  70. Ward CA, Ma Z, Lee SS, Giles WR. Potassium currents in atrial and ventricular myocytes from a rat model of cirrhosis. Am J Physiol 1997;273:G537–G544

    PubMed  CAS  Google Scholar 

  71. Lin RS, Lee FY, Lee SD, Tsai YT, Lin HC, Lu RH, et al. Endotoxemia in patients with chronic liver diseases: relationship to severity of liver diseases, presence of esophageal varices, and hyperdynamic circulation. J Hepatol 1995;22:165–172

    Article  PubMed  CAS  Google Scholar 

  72. Zhong J, Hwang TC, Adams HR, Rubin LJ. Reduced L-type calcium current in ventricular myocytes from endotoxemic guinea pigs. Am J Physiol 1997;273:H2312–H2324

    PubMed  CAS  Google Scholar 

  73. Magyar J, Iost N, Kortvely A, Banyasz T, Virag L, Szigligeti P, et al. Effects of endothelin-1 on calcium and potassium currents in undiseased human ventricular myocytes. Pflugers Arch 2000;441:144–149

    Article  PubMed  CAS  Google Scholar 

  74. Kuddus RH, Nalesnik MA, Subbotin VM, Rao AS, Gandhi CR. Enhanced synthesis and reduced metabolism of endothelin-1 (ET-1) by hepatocytes—an important mechanism of increased endogenous levels of ET-1 in liver cirrhosis. J Hepatol 2000;33:725–732

    Article  PubMed  CAS  Google Scholar 

  75. Gazawi H, Ljubuncic P, Cogan U, Hochgraff E, Ben-Shachar D, Bomzon A. The effects of bile acids on beta-adrenoceptors, fluidity, and the extent of lipid peroxidation in rat cardiac membranes. Biochem Pharmacol 2000;59:1623–1628

    Article  PubMed  CAS  Google Scholar 

  76. Gould L, Shariff M, Zahir M, Di Lieto M. Cardiac hemodynamics in alcoholic patients with chronic liver disease and a presystolic gallop. J Clin Invest 1969;48:860–868

    Article  PubMed  CAS  Google Scholar 

  77. Kelbaek H, Eriksen J, Brynjolf I, Raboel A, Lund JO, Munck O, et al. Cardiac performance in patients with asymptomatic alcoholic cirrhosis of the liver. Am J Cardiol 1984;54:852–855

    Article  PubMed  CAS  Google Scholar 

  78. Limas CJ, Guiha NH, Lekagul O, Cohn JN. Impaired left ventricular function in alcoholic cirrhosis with ascites. Ineffectiveness of ouabain. Circulation 1974;49:754–760

    PubMed  CAS  Google Scholar 

  79. Ruiz-del-Arbol L, Urman J, Fernández J, González M, Navasa M, Monescillo A, et al. Systemic, renal, and hepatic hemodynamic derangement in cirrhotic patients with spontaneous bacterial peritonitis. Hepatology 2003;38:1210–1218

    Article  PubMed  Google Scholar 

  80. Ruiz-del-Arbol L, Monescillo A, Arocena C, Valer P, Ginès P, Moreira V, et al. Circulatory function and hepatorenal syndrome in cirrhosis. Hepatology 2005;42:439–447

    Article  PubMed  CAS  Google Scholar 

  81. Ferguson DW, Berg WJ, Roach PJ, Oren RM, Mark AL. Effects of heart failure on baroreflex control of sympathetic neural activity. Am J Cardiol 1992;69:523–531

    Article  PubMed  CAS  Google Scholar 

  82. Braverman AC, Steiner MA, Picus D, White H. High-output congestive heart failure following transjugular intrahepatic portal-systemic shunting. Chest 1995;107:1467–1469

    Article  PubMed  CAS  Google Scholar 

  83. Ginès P, Uriz J, Calahorra B, Garcia-Tsao G, Kamath PS, Del Arbol LR, et al. Transjugular intrahepatic portosystemic shunting versus paracentesis plus albumin for refractory ascites in cirrhosis. Gastroenterology 2002;123:1839–1847

    Article  PubMed  Google Scholar 

  84. Huonker M, Schumacher YO, Ochs A, Sorichter S, Keul J, Rössle M. Cardiac function and haemodynamics in alcoholic cirrhosis and effects of the transjugular intrahepatic portosystemic stent shunt. Gut 1999;44:743–748

    Article  PubMed  CAS  Google Scholar 

  85. Cazzaniga M, Salerno F, Pagnozzi G, Dionigi E, Visentin S, Cirello I, et al. Diastolic dysfunction is associated with poor survival in patients with cirrhosis with transjugular intrahepatic portosystemic shunt. Gut 2007;56:869–875

    Article  PubMed  Google Scholar 

  86. Rabie R, Cazzaniga M, Salerno F, Wong F. The effect of cirrhotic cardiomyopathy on the post-TIPS outcome of patients treated for complications of portal hypertension. [abstract]. Hepatology 2006;44(Suppl 1):444A

    Google Scholar 

  87. Donovan CL, Marcovitz PA, Punch JD, Bach DS, Brown KA, Lucey MR, et al. Two-dimensional and dobutamine stress echocardiography in the preoperative assessment of patients with end-stage liver disease prior to orthotopic liver transplantation. Transplantation 1996;61:1180–1188

    Article  PubMed  CAS  Google Scholar 

  88. Sampathkumar P, Lerman A, Kim BY, Narr BJ, Poterucha JJ, Torsher LC, et al. Post-liver transplantation myocardial dysfunction. Liver Transpl Surg 1998;4:399–403

    Article  PubMed  CAS  Google Scholar 

  89. Therapondos G, Flapan AD, Plevris JN, Hayes PC. Cardiac morbidity and mortality related to orthotopic liver transplantation. Liver Transpl 2004;10:1441–1453

    Article  PubMed  Google Scholar 

  90. Torregrosa M, Aguadé S, Dos L, Segura R, Gónzalez A, Evangelista A, et al. Cardiac alterations in cirrhosis: reversibility after liver transplantation. J Hepatol 2005;42:68–74

    Article  PubMed  Google Scholar 

  91. Trevisani F, Merli M, Savelli F, Valeriano V, Zambruni A, Riggio O, et al. QT interval in patients with non-cirrhotic portal hypertension and in cirrhotic patients treated with transjugular intrahepatic porto-systemic shunt. J Hepatol 2003;38:461–467

    Article  PubMed  Google Scholar 

  92. Henriksen JH, Bendtsen F, Hansen EF, Møller S. Acute non-selective beta-adrenergic blockade reduces prolonged frequency-adjusted Q-T interval (QTc) in patients with cirrhosis. J Hepatol 2004;40:239–246

    Article  PubMed  CAS  Google Scholar 

  93. Zambruni A, Trevisani F, Di Micoli A, Savelli F, Berzigotti A, Bracci E, et al. Effect of chronic beta-blockade on QT interval in patients with liver cirrhosis. J Hepatol 2008;48:415–421

    Article  PubMed  Google Scholar 

  94. Pozzi M, Grassi G, Ratti L, Favini G, Dell’Oro R, Redaelli E, et al. Cardiac, neuroadrenergic, and portal hemodynamic effects of prolonged aldosterone blockade in postviral child A cirrhosis. Am J Gastroenterol 2005;100:1110–1116

    Article  PubMed  CAS  Google Scholar 

  95. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 1999;341:709–717

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Wong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, F. Cirrhotic cardiomyopathy. Hepatol Int 3, 294–304 (2009). https://doi.org/10.1007/s12072-008-9109-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-008-9109-7

Keywords

Navigation