Skip to main content

Advertisement

Log in

VSL#3 probiotics exerts the anti-inflammatory activity via PI3k/Akt and NF-κB pathway in rat model of DSS-induced colitis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

VSL#3 probiotics can be effective on induction and maintenance of the remission of clinical ulcerative colitis. However, the mechanisms are not fully understood. The aim of this study was to examine the effects of VSL#3 probiotics on dextran sulfate sodium (DSS)-induced colitis in rats. Acute colitis was induced by administration of DSS 3.5 % for 7 days in rats. Rats in two groups were treated with either 15 mg VSL#3 or placebo via gastric tube once daily after induction of colitis; rats in other two groups were treated with either the wortmannin (1 mg/kg) via intraperitoneal injection or the wortmannin + VSL#3 after induction of colitis. Anti-inflammatory activity was assessed by myeloperoxidase (MPO) activity. Expression of inflammatory related mediators (iNOS, COX-2, NF-κB, Akt, and p-Akt) and cytokines (TNF-α, IL-6, and IL-10) in colonic tissue were assessed. TNF-α, IL-6, and IL-10 serum levels were also measured. Our results demonstrated that VSL#3 and wortmannin have anti-inflammatory properties by the reduced disease activity index and MPO activity. In addition, administration of VSL#3 and wortmannin for 7 days resulted in a decrease of iNOS, COX-2, NF-κB, TNF-α, IL-6, and p-Akt and an increase of IL-10 expression in colonic tissue. At the same time, administration of VSL#3 and wortmannin resulted in a decrease of TNF-α and IL-6 and an increase of IL-10 serum levels. VSL#3 probiotics therapy exerts the anti-inflammatory activity in rat model of DSS-induced colitis by inhibiting PI3K/Akt and NF-κB pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bernstein CN (2010) New insights into IBD epidemiology: are there any lessons for treatment? Dig Dis 28(3):406–410

    Article  PubMed  Google Scholar 

  2. Fiasse R, Denis MA, Dewit O (2010) Chronic inflammatory bowel disease: Crohn’s disease and ulcerative colitis. J Pharm Belg 1:1–9

    PubMed  Google Scholar 

  3. Floch MH (2003) Probiotics, irritable bowel syndrome, and inflammatory bowel disease. Curr Treat Options Gastroenterol 6(4):283–288

    Article  PubMed  Google Scholar 

  4. Leske D, Hoffmann JC (2010) Inflammatory bowel disease: longterm management. MMW Fortschr Med 152(28–30):40–42

    PubMed  Google Scholar 

  5. Morson BC (1980) Pathology of inflammatory bowel disease. Gastroenterol Jpn 15(2):184–187

    PubMed  CAS  Google Scholar 

  6. Angulo S, Morales A, Danese S, Llacuna L, Masamunt MC, Pultz N, Cifone MG, De Simone C, Delgado S, Vila J, Panes J, Donskey C, Fernandez-Checa JC, Fiocchi C, Sans M (2011) Probiotic sonicates selectively induce mucosal immune cells apoptosis through ceramide generation via neutral sphingomyelinase. PLoS One 6(3):e16953. doi:10.1371/journal.pone.0016953

    Article  PubMed  CAS  Google Scholar 

  7. Yuan H, Ji WS, Wu KX, Jiao JX, Sun LH, Feng YT (2006) Anti-inflammatory effect of diammonium glycyrrhizinate in a rat model of ulcerative colitis. World J Gastroenterol 12(28):4578–4581

    PubMed  Google Scholar 

  8. Choi SY, Hur SJ, An CS, Jeon YH, Jeoung YJ, Bak JP, Lim BO (2010) Anti-inflammatory effects of Inonotus obliquus in colitis induced by dextran sodium sulfate. J Biomed Biotechnol 2010:943516. doi:10.1155/2010/943516

    Article  PubMed  Google Scholar 

  9. Islam MS, Murata T, Fujisawa M, Nagasaka R, Ushio H, Bari AM, Hori M, Ozaki H (2008) Anti-inflammatory effects of phytosteryl ferulates in colitis induced by dextran sulphate sodium in mice. Br J Pharmacol 154(4):812–824. doi:10.1038/bjp.2008.137

    Article  PubMed  CAS  Google Scholar 

  10. Oh PS, Lim KT (2006) Plant originated glycoprotein has anti-oxidative and anti-inflammatory effects on dextran sulfate sodium-induced colitis in mouse. J Biomed Sci 13(4):549–560. doi:10.1007/s11373-006-9083-9

    Article  PubMed  CAS  Google Scholar 

  11. Domizio P (1994) Pathology of chronic inflammatory bowel disease in children. Baillieres Clin Gastroenterol 8(1):35–63

    Article  PubMed  CAS  Google Scholar 

  12. Cui HH, Chen CL, Wang JD, Yang YJ, Cun Y, Wu JB, Liu YH, Dan HL, Jian YT, Chen XQ (2004) Effects of probiotic on intestinal mucosa of patients with ulcerative colitis. World J Gastroenterol 10(10):1521–1525

    PubMed  CAS  Google Scholar 

  13. Floch MH, Madsen KK, Jenkins DJ, Guandalini S, Katz JA, Onderdonk A, Walker WA, Fedorak RN, Camilleri M (2006) Recommendations for probiotic use. J Clin Gastroenterol 40(3):275–278

    Article  PubMed  Google Scholar 

  14. Friswell M, Campbell B, Rhodes J (2010) The role of bacteria in the pathogenesis of inflammatory bowel disease. Gut Liver 4(3):295–306. doi:10.5009/gnl.2010.4.3.295

    Article  PubMed  CAS  Google Scholar 

  15. Guandalini S (2010) Update on the role of probiotics in the therapy of pediatric inflammatory bowel disease. Expert Rev Clin Immunol 6(1):47–54

    Article  PubMed  CAS  Google Scholar 

  16. Haller D, Antoine JM, Bengmark S, Enck P, Rijkers GT, Lenoir-Wijnkoop I (2010) Guidance for substantiating the evidence for beneficial effects of probiotics: probiotics in chronic inflammatory bowel disease and the functional disorder irritable bowel syndrome. J Nutr 140(3):690S–697S. doi:10.3945/jn.109.113746

    Article  PubMed  CAS  Google Scholar 

  17. Hering NA, Schulzke JD (2009) Therapeutic options to modulate barrier defects in inflammatory bowel disease. Dig Dis 27(4):450–454. doi:10.1159/000233283

    Article  PubMed  Google Scholar 

  18. Williams NT (2010) Probiotics. Am J Health Syst Pharm 67(6):449–458. doi:10.2146/ajhp090168

    Article  PubMed  CAS  Google Scholar 

  19. Huynh HQ, deBruyn J, Guan L, Diaz H, Li M, Girgis S, Turner J, Fedorak R, Madsen K (2009) Probiotic preparation VSL#3 induces remission in children with mild to moderate acute ulcerative colitis: a pilot study. Inflamm Bowel Dis 15(5):760–768. doi:10.1002/ibd.20816

    Article  PubMed  Google Scholar 

  20. Reiff C, Kelly D (2010) Inflammatory bowel disease, gut bacteria and probiotic therapy. Int J Med Microbiol 300(1):25–33. doi:10.1016/j.ijmm.2009.08.004

    Article  PubMed  CAS  Google Scholar 

  21. Sengul N, Isik S, Aslim B, Ucar G, Demirbag AE (2011) The effect of exopolysaccharide-producing probiotic strains on gut oxidative damage in experimental colitis. Dig Dis Sci 56(3):707–714. doi:10.1007/s10620-010-1362-7

    Article  PubMed  Google Scholar 

  22. Uronis JM, Arthur JC, Keku T, Fodor A, Carroll IM, Cruz ML, Appleyard CB, Jobin C (2011) Gut microbial diversity is reduced by the probiotic VSL#3 and correlates with decreased TNBS-induced colitis. Inflamm Bowel Dis 17(1):289–297. doi:10.1002/ibd.21366

    Article  PubMed  Google Scholar 

  23. Wan YM, Zhu YQ, Xia B, Luo J (2010) Probiotic therapy using live combined bifidobacterium, lactobacillus and enterococcus for experimental colitis in rats model. Zhonghua Nei Ke Za Zhi 49(5):418–421

    PubMed  Google Scholar 

  24. Amit-Romach E, Uni Z, Reifen R (2010) Multistep mechanism of probiotic bacterium, the effect on innate immune system. Mol Nutr Food Res 54(2):277–284. doi:10.1002/mnfr.200800591

    Article  PubMed  CAS  Google Scholar 

  25. Arribas B, Rodriguez-Cabezas ME, Camuesco D, Comalada M, Bailon E, Utrilla P, Nieto A, Concha A, Zarzuelo A, Galvez J (2009) A probiotic strain of Escherichia coli, Nissle 1917, given orally exerts local and systemic anti-inflammatory effects in lipopolysaccharide-induced sepsis in mice. Br J Pharmacol 157(6):1024–1033. doi:10.1111/j.1476-5381.2009.00270.x

    Article  PubMed  CAS  Google Scholar 

  26. Di Giacinto C, Marinaro M, Sanchez M, Strober W, Boirivant M (2005) Probiotics ameliorate recurrent Th1-mediated murine colitis by inducing IL-10 and IL-10-dependent TGF-beta-bearing regulatory cells. J Immunol 174(6):3237–3246

    PubMed  Google Scholar 

  27. Lee SK, Kim HJ, Chi SG (2010) Saccharomyces boulardii reduced intestinal inflammation in mice model of 2,4,6-trinitrobencene sulfonic acid induced colitis: based on microarray. Korean J Gastroenterol 55(1):33–45

    Article  PubMed  Google Scholar 

  28. Mohamadzadeh M, Pfeiler EA, Brown JB, Zadeh M, Gramarossa M, Managlia E, Bere P, Sarraj B, Khan MW, Pakanati KC, Ansari MJ, O’Flaherty S, Barrett T, Klaenhammer TR (2011) Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc Natl Acad Sci USA 108(Suppl 1):4623–4630. doi:10.1073/pnas.1005066107

    Article  PubMed  CAS  Google Scholar 

  29. Philippe D, Heupel E, Blum-Sperisen S, Riedel CU (2010) Treatment with Bifidobacterium bifidum 17 partially protects mice from Th1-driven inflammation in a chemically induced model of colitis. Int J Food Microbiol. doi:10.1016/j.ijfoodmicro.2010.12.020

    PubMed  Google Scholar 

  30. Bibiloni R, Fedorak RN, Tannock GW, Madsen KL, Gionchetti P, Campieri M, De Simone C, Sartor RB (2005) VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis. Am J Gastroenterol 100(7):1539–1546. doi:10.1111/j.1572-0241.2005.41794.x

    Article  PubMed  Google Scholar 

  31. Chapman TM, Plosker GL, Figgitt DP (2006) VSL#3 probiotic mixture: a review of its use in chronic inflammatory bowel diseases. Drugs 66(10):1371–1387

    Article  PubMed  CAS  Google Scholar 

  32. Guandalini S, Magazzu G, Chiaro A, La Balestra V, Di Nardo G, Gopalan S, Sibal A, Romano C, Canani RB, Lionetti P, Setty M (2010) VSL#3 improves symptoms in children with irritable bowel syndrome: a multicenter, randomized, placebo-controlled, double-blind, crossover study. J Pediatr Gastroenterol Nutr 51(1):24–30. doi:10.1097/MPG.0b013e3181ca4d95

    Article  PubMed  Google Scholar 

  33. Jackson EL, Hamlin PJ, Ford AC (2011) VSL#3 and remission in active ulcerative colitis: larger studies required. Am J Gastroenterol 106(3):547. doi:10.1038/ajg.2010.451

    Article  PubMed  Google Scholar 

  34. Yan F, Polk DB (2012) Characterization of a probiotic-derived soluble protein which reveals a mechanism of preventive and treatment effects of probiotics on intestinal inflammatory diseases. Gut Microbes 3(1):25–28. doi:10.4161/gmic.19245

    Article  PubMed  Google Scholar 

  35. Cooper HS, Murthy SN, Shah RS, Sedergran DJ (1993) Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest 69(2):238–249

    PubMed  CAS  Google Scholar 

  36. Rijcken EM, Laukoetter MG, Anthoni C, Meier S, Mennigen R, Spiegel HU, Bruewer M, Senninger N, Vestweber D, Krieglstein CF (2004) Immunoblockade of PSGL-1 attenuates established experimental murine colitis by reduction of leukocyte rolling. Am J Physiol Gastrointest Liver Physiol 287(1):G115–G124. doi:10.1152/ajpgi.00207.2003

    Article  PubMed  CAS  Google Scholar 

  37. Fitzpatrick LR, Hertzog KL, Quatse AL, Koltun WA, Small JS, Vrana K (2007) Effects of the probiotic formulation VSL#3 on colitis in weanling rats. J Pediatr Gastroenterol Nutr 44(5):561–570. doi:10.1097/MPG.0b013e31803bda51

    Article  PubMed  Google Scholar 

  38. Bjorck S, Jennische E, Dahlstrom A, Ahlman H (1997) Influence of topical rectal application of drugs on dextran sulfate-induced colitis in rats. Dig Dis Sci 42(4):824–832

    Article  PubMed  CAS  Google Scholar 

  39. Bailon E, Comalada M, Roman J, Michelena P, Ramis I, Merlos M, Nieto A, Concha A, Zarzuelo A, Galvez J (2008) UR-1505, a salicylate able to selectively block T-cell activation, shows intestinal anti-inflammatory activity in the chronic phase of the DSS model of rat colitis. Inflamm Bowel Dis 14(7):888–897. doi:10.1002/ibd.20381

    Article  PubMed  Google Scholar 

  40. Borjesson L, Aldenborg F, Delbro DS (2001) Functional effects of dextran sulphate sodium (DSS) treatment on the longitudinal muscle of rat distal colon. J Auton Pharmacol 21(3):121–129

    Article  PubMed  CAS  Google Scholar 

  41. Gaudier E, Michel C, Segain JP, Cherbut C, Hoebler C (2005) The VSL# 3 probiotic mixture modifies microflora but does not heal chronic dextran-sodium sulfate-induced colitis or reinforce the mucus barrier in mice. J Nutr 135(12):2753–2761

    PubMed  CAS  Google Scholar 

  42. Babbs CF (1992) Oxygen radicals in ulcerative colitis. Free Radic Biol Med 13(2):169–181

    Article  PubMed  CAS  Google Scholar 

  43. Sandborn WJ, Targan SR (2002) Biologic therapy of inflammatory bowel disease. Gastroenterology 122(6):1592–1608

    Article  PubMed  CAS  Google Scholar 

  44. Aktan F (2004) iNOS-mediated nitric oxide production and its regulation. Life Sci 75(6):639–653. doi:10.1016/j.lfs.2003.10.042

    Article  PubMed  CAS  Google Scholar 

  45. Krieglstein CF, Cerwinka WH, Laroux FS, Salter JW, Russell JM, Schuermann G, Grisham MB, Ross CR, Granger DN (2001) Regulation of murine intestinal inflammation by reactive metabolites of oxygen and nitrogen: divergent roles of superoxide and nitric oxide. J Exp Med 194(9):1207–1218

    Article  PubMed  CAS  Google Scholar 

  46. Menchen L, Colon AL, Madrigal JL, Beltran L, Botella S, Lizasoain I, Leza JC, Moro MA, Menchen P, Cos E, Lorenzo P (2004) Activity of inducible and neuronal nitric oxide synthases in colonic mucosa predicts progression of ulcerative colitis. Am J Gastroenterol 99(9):1756–1764. doi:10.1111/j.1572-0241.2004.40065.x

    Article  PubMed  CAS  Google Scholar 

  47. Singer II, Kawka DW, Schloemann S, Tessner T, Riehl T, Stenson WF (1998) Cyclooxygenase 2 is induced in colonic epithelial cells in inflammatory bowel disease. Gastroenterology 115(2):297–306

    Article  PubMed  CAS  Google Scholar 

  48. Wallace JL (2006) COX-2: a pivotal enzyme in mucosal protection and resolution of inflammation. ScientificWorldJournal 6:577–588. doi:10.1100/tsw.2006.122

    Article  PubMed  CAS  Google Scholar 

  49. Tsubouchi R, Hayashi S, Aoi Y, Nishio H, Terashima S, Kato S, Takeuchi K (2006) Healing impairment effect of cyclooxygenase inhibitors on dextran sulfate sodium-induced colitis in rats. Digestion 74(2):91–100. doi:10.1159/000097657

    Article  PubMed  CAS  Google Scholar 

  50. Hendel J, Nielsen OH (1997) Expression of cyclooxygenase-2 mRNA in active inflammatory bowel disease. Am J Gastroenterol 92(7):1170–1173

    PubMed  CAS  Google Scholar 

  51. Tracey KJ, Cerami A (1994) Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu Rev Med 45:491–503. doi:10.1146/annurev.med.45.1.491

    Article  PubMed  CAS  Google Scholar 

  52. Mitsuyama K, Sata M, Tanikawa K (1991) Significance of interleukin-6 in patients with inflammatory bowel disease. Gastroenterol Jpn 26(1):20–28

    PubMed  CAS  Google Scholar 

  53. Nilsen EM, Johansen FE, Jahnsen FL, Lundin KE, Scholz T, Brandtzaeg P, Haraldsen G (1998) Cytokine profiles of cultured microvascular endothelial cells from the human intestine. Gut 42(5):635–642

    Article  PubMed  CAS  Google Scholar 

  54. Bobin-Dubigeon C, Collin X, Grimaud N, Robert JM, Le Baut G, Petit JY (2001) Effects of tumour necrosis factor-alpha synthesis inhibitors on rat trinitrobenzene sulphonic acid-induced chronic colitis. Eur J Pharmacol 431(1):103–110

    Article  PubMed  CAS  Google Scholar 

  55. Mitsuyama K, Sasaki E, Toyonaga A, Ikeda H, Tsuruta O, Irie A, Arima N, Oriishi T, Harada K, Fujisaki K et al (1991) Colonic mucosal interleukin-6 in inflammatory bowel disease. Digestion 50(2):104–111

    Article  PubMed  CAS  Google Scholar 

  56. Rennick DM, Fort MM (2000) Lessons from genetically engineered animal models. XII. IL-10-deficient (IL)-10(−/−) mice and intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 278(6):G829–G833

    PubMed  CAS  Google Scholar 

  57. Asseman C, Read S, Powrie F (2003) Colitogenic Th1 cells are present in the antigen-experienced T cell pool in normal mice: control by CD4+ regulatory T cells and IL-10. J Immunol 171(2):971–978

    PubMed  CAS  Google Scholar 

  58. Takahashi I, Matsuda J, Gapin L, DeWinter H, Kai Y, Tamagawa H, Kronenberg M, Kiyono H (2002) Colitis-related public T cells are selected in the colonic lamina propria of IL-10-deficient mice. Clin Immunol 102(3):237–248. doi:10.1006/clim.2001.5166

    Article  PubMed  CAS  Google Scholar 

  59. Sydora BC, Tavernini MM, Wessler A, Jewell LD, Fedorak RN (2003) Lack of interleukin-10 leads to intestinal inflammation, independent of the time at which luminal microbial colonization occurs. Inflamm Bowel Dis 9(2):87–97

    Article  PubMed  Google Scholar 

  60. Foligne B, Nutten S, Grangette C, Dennin V, Goudercourt D, Poiret S, Dewulf J, Brassart D, Mercenier A, Pot B (2007) Correlation between in vitro and in vivo immunomodulatory properties of lactic acid bacteria. World J Gastroenterol 13(2):236–243

    PubMed  Google Scholar 

  61. Bremner P, Heinrich M (2002) Natural products as targeted modulators of the nuclear factor-kappaB pathway. J Pharm Pharmacol 54(4):453–472

    Article  PubMed  CAS  Google Scholar 

  62. Taylor BS, de Vera ME, Ganster RW, Wang Q, Shapiro RA, Morris SM Jr, Billiar TR, Geller DA (1998) Multiple NF-kappaB enhancer elements regulate cytokine induction of the human inducible nitric oxide synthase gene. J Biol Chem 273(24):15148–15156

    Article  PubMed  CAS  Google Scholar 

  63. Garcia D, Delgado R, Ubeira FM, Leiro J (2002) Modulation of rat macrophage function by the Mangifera indica L. extracts Vimang and mangiferin. Int Immunopharmacol 2(6):797–806

    Article  PubMed  CAS  Google Scholar 

  64. Priulla M, Calastretti A, Bruno P, Azzariti A, Paradiso A, Canti G, Nicolin A (2007) Preferential chemosensitization of PTEN-mutated prostate cells by silencing the Akt kinase. Prostate 67(7):782–789. doi:10.1002/pros.20566

    Article  PubMed  CAS  Google Scholar 

  65. Martelli AM, Nyakern M, Tabellini G, Bortul R, Tazzari PL, Evangelisti C, Cocco L (2006) Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia 20(6):911–928. doi:10.1038/sj.leu.2404245

    Article  PubMed  CAS  Google Scholar 

  66. Tang JM, He QY, Guo RX, Chang XJ (2006) Phosphorylated Akt overexpression and loss of PTEN expression in non-small cell lung cancer confers poor prognosis. Lung Cancer 51(2):181–191. doi:10.1016/j.lungcan.2005.10.003

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, C., Zheng, CQ., Meng, Fj. et al. VSL#3 probiotics exerts the anti-inflammatory activity via PI3k/Akt and NF-κB pathway in rat model of DSS-induced colitis. Mol Cell Biochem 374, 1–11 (2013). https://doi.org/10.1007/s11010-012-1488-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1488-3

Keywords

Navigation