Skip to main content

Advertisement

Log in

Regulatory Role of the JNK-STAT1/3 Signaling in Neuronal Differentiation of Cultured Mouse Embryonic Stem Cells

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Stem cell transplantation therapy has provided promising hope for the treatment of a variety of neurodegenerative disorders. Among challenges in developing disease-specific stem cell therapies, identification of key regulatory signals for neuronal differentiation is an essential and critical issue that remains to be resolved. Several lines of evidence suggest that JNK, also known as SAPK, is involved in neuronal differentiation and neural plasticity. It may also play a role in neurite outgrowth during neuronal development. In cultured mouse embryonic stem (ES) cells, we test the hypothesis that the JNK pathway is required for neuronal differentiation. After neural induction, the cells were plated and underwent differentiation for up to 5 days. Western blot analysis showed a dramatic increase in phosphorylated JNKs at 1–5 days after plating. The phosphorylation of JNK subsequently induced activation of STAT1 and STAT3 that lead to expressions of GAP-43, neurofilament, βIII-tubulin, and synaptophysin. NeuN-colabelled with DCX, a marker for neuroblast, was enhanced by JNK signaling. Neuronal differentiation of ES cells was attenuated by treatment with SP600125, which inhibited the JNK activation and decreased the activation of STAT1 and STAT3, and consequently suppressed the expressions of GAP-43, neurofilament, βIII-tubulin, and the secretion of VEGF. Data from immunocytochemistry indicated that the nuclear translocation of STAT3 was reduced, and neurites of ES-derived neurons were shorter after treatment with SP600125 compared with control cells. These results suggest that the JNK-STAT3 pathway is a key regulator required for early neuronal differentiation of mouse ES cells. Further investigation on expression of JNK isoforms showed that JNK-3 was significantly upregulated during the differentiation stage, while JNK-1 and JNK-2 levels decreased. Our study provided interesting information on JNK functions during ES cell neuronal differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alter J, Rozentzweig D, Bengal E (2008) Inhibition of myoblast differentiation by tumor necrosis factor alpha is mediated by c-Jun N-terminal kinase 1 and leukemia inhibitory factor. J Biol Chem 283(34):23224–23234. doi:10.1074/801379200

    Article  CAS  PubMed  Google Scholar 

  • Anjomshoa M, Karbalaie K, Mardani M, Razavi S, Tanhaei S, Nasr-Esfahani MH, Baharvand H (2009) Generation of motor neurons by coculture of retinoic acid-pretreated embryonic stem cells with chicken notochords. Stem Cells Dev 18(2):259–267. doi:10.1089/2008.0049

    Article  CAS  PubMed  Google Scholar 

  • Atkinson PJ, Cho CH, Hansen MR, Green SH (2011) Activity of all JNK isoforms contributes to neurite growth in spiral ganglion neurons. Hear Res 278(1–2):77–85. doi:10.1016/2011.04.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barnat M, Enslen H, Propst F, Davis RJ, Soares S, Nothias F (2010) Distinct roles of c-Jun N-terminal kinase isoforms in neurite initiation and elongation during axonal regeneration. J Neurosci 30(23):7804–7816. doi:10.1523/0372-10.2010

    Article  CAS  PubMed  Google Scholar 

  • Bennett BL, Sasaki DT, Murray BW, O’Leary EC, Sakata ST, Xu W, Leisten JC, Motiwala A, Pierce S, Satoh Y, Bhagwat SS, Manning AM, Anderson DW (2001) SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci USA 98(24):13681–13686. doi:10.1073/251194298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Byun K, Kim TK, Oh J, Bayarsaikhan E, Kim D, Lee MY, Pack CG, Hwang D, Lee B (2013) Heat shock instructs hESCs to exit from the self-renewal program through negative regulation of OCT4 by SAPK/JNK and HSF1 pathway. Stem Cell Res 11(3):1323–1334. doi:10.1016/2013.08.014

    Article  CAS  PubMed  Google Scholar 

  • Cai B, Li X, Wang Y, Liu Y, Yang F, Chen H, Yin K, Tan X, Zhu J, Pan Z, Wang B, Lu Y (2013) Apoptosis of bone marrow mesenchymal stem cells caused by homocysteine via activating JNK signal. PLoS ONE 8(5):e63561. doi:10.1371/0063561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chang L, Kamata H, Solinas G, Luo JL, Maeda S, Venuprasad K, Liu YC, Karin M (2006) The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover. Cell 124(3):601–613. doi:10.1016/2006.01.021

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Wang Q, Wang J, Lv M, Zhu N, Li Y, Feng J, Shen B, Zhang J (2009) Basal c-Jun NH2-terminal protein kinase activity is essential for survival and proliferation of T-cell acute lymphoblastic leukemia cells. Mol Cancer Ther 8(12):3214–3222. doi:10.1158/1535-7163

    Article  CAS  PubMed  Google Scholar 

  • Engberg N, Kahn M, Petersen DR, Hansson M, Serup P (2010) Retinoic acid synthesis promotes development of neural progenitors from mouse embryonic stem cells by suppressing endogenous, Wnt-dependent nodal signaling. Stem Cells 28(9):1498–1509. doi:10.1002/479

    Article  CAS  PubMed  Google Scholar 

  • Eom DS, Choi WS, Oh YJ (2004) Bcl-2 enhances neurite extension via activation of c-Jun N-terminal kinase. Biochem Biophys Res Commun 314(2):377–381

    Article  CAS  PubMed  Google Scholar 

  • Eom DS, Choi WS, Ji S, Cho JW, Oh YJ (2005) Activation of c-Jun N-terminal kinase is required for neurite outgrowth of dopaminergic neuronal cells. NeuroReport 16(8):823–828

    Article  CAS  PubMed  Google Scholar 

  • Fanger GR, Gerwins P, Widmann C, Jarpe MB, Johnson GL (1997) MEKKs, GCKs, MLKs, PAKs, TAKs, and tpls: upstream regulators of the c-Jun amino-terminal kinases? Curr Opin Genet Dev 7(1):67–74

    Article  CAS  PubMed  Google Scholar 

  • Fraser L, Taylor AH, Forrester LM (2013) SCF/KIT inhibition has a cumulative but reversible effect on the self-renewal of embryonic stem cells and on the survival of differentiating cells. Cell Reprogr 15(4):259–268. doi:10.1089/2013.0015

    CAS  Google Scholar 

  • Gdalyahu A, Ghosh I, Levy T, Sapir T, Sapoznik S, Fishler Y, Azoulai D, Reiner O (2004) DCX, a new mediator of the JNK pathway. EMBO J 23(4):823–832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guerrini R, Marini C (2006) Genetic malformations of cortical development. Exp Brain Res 173(2):322–333. doi:10.1007/s00221-006-0501

    Article  PubMed  Google Scholar 

  • Haeusgen W, Boehm R, Zhao Y, Herdegen T, Waetzig V (2009) Specific activities of individual c-Jun N-terminal kinases in the brain. Neuroscience 161(4):951–959. doi:10.1016/2009.04.014

    Article  CAS  PubMed  Google Scholar 

  • Haeusgen W, Herdegen T, Waetzig V (2011) MKK7gamma1 reverses nerve growth factor signals: proliferation and cell death instead of neuritogenesis and protection. Cell Signal 23(8):1281–1290. doi:10.1016/2011.03.009

    Article  CAS  PubMed  Google Scholar 

  • He JC, Gomes I, Nguyen T, Jayaram G, Ram PT, Devi LA, Iyengar R (2005) The G alpha(o/i)-coupled cannabinoid receptor-mediated neurite outgrowth involves Rap regulation of Src and Stat3. J Biol Chem 280(39):33426–33434. doi:10.1074/502812200

    Article  CAS  PubMed  Google Scholar 

  • Himes SR, Sester DP, Ravasi T, Cronau SL, Sasmono T, Hume DA (2006) The JNK are important for development and survival of macrophages. J Immunol 176(4):2219–2228

    Article  CAS  PubMed  Google Scholar 

  • Holm KH, Cicchetti F, Bjorklund L, Boonman Z, Tandon P, Costantini LC, Deacon TW, Huang X, Chen DF, Isacson O (2001) Enhanced axonal growth from fetal human bcl-2 transgenic mouse dopamine neurons transplanted to the adult rat striatum. Neuroscience 104(2):397–405

    Article  CAS  PubMed  Google Scholar 

  • Hui L, Zatloukal K, Scheuch H, Stepniak E, Wagner EF (2008) Proliferation of human HCC cells and chemically induced mouse liver cancers requires JNK1-dependent p21 downregulation. J Clin Investig 118(12):3943–3953. doi:10.1172/37156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kook SH, Jeon YM, Lim SS, Jang MJ, Cho ES, Lee SY, Choi KC, Kim JG, Lee JC (2013) Fibroblast growth factor-4 enhances proliferation of mouse embryonic stem cells via activation of c-Jun signaling. PLoS ONE 8(8):e71641. doi:10.1371/0071641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Z, Theus MH, Wei L (2006) Role of ERK 1/2 signaling in neuronal differentiation of cultured embryonic stem cells. Dev Growth Differ 48(8):513–523. doi:10.1111/1440-169X.2006.00889

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Ye R, Yan T, Yu SP, Wei L, Xu G, Fan X, Jiang Y, Stetler RA, Liu G, Chen J (2013) Cell based therapies for ischemic stroke: from basic science to bedside. Prog Neurobiol. doi:10.1016/2013.11.007

    PubMed Central  Google Scholar 

  • Ming GL, Wong ST, Henley J, Yuan XB, Song HJ, Spitzer NC, Poo MM (2002) Adaptation in the chemotactic guidance of nerve growth cones. Nature 417(6887):411–418. doi:10.1038/745

    Article  CAS  PubMed  Google Scholar 

  • Mohamad O, Yu SP, Chen D, Ogle M, Song M, Wei L (2014) Efficient neuronal differentiation of mouse ES and iPS cells using a rotary cell culture protocol. Differentiation. doi:10.1016/2013.12.002

    Google Scholar 

  • Muth-Kohne E, Pachernegg S, Karus M, Faissner A, Hollmann M (2011) Expression of NMDA receptors and Ca2+-impermeable AMPA receptors requires neuronal differentiation and allows discrimination between two different types of neural stem cells. Cell Physiol Biochem 26(6):935–946. doi:10.1159/000324002

    Article  Google Scholar 

  • O’Donnell M, Chance RK, Bashaw GJ (2009) Axon growth and guidance: receptor regulation and signal transduction. Annu Rev Neurosci 32:383–412. doi:10.1146/051508.135614

    Article  PubMed  Google Scholar 

  • Ouyang M, Shen X (2006) Critical role of ASK1 in the 6-hydroxydopamine-induced apoptosis in human neuroblastoma SH-SY5Y cells. J Neurochem 97(1):234–244. doi:10.1111/1471-4159.2006.03730

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Xiao Q, Sheng CY, Hong Z, Yang HQ, Wang G, Ding JQ, Chen SD (2009) Blockade of the translocation and activation of c-Jun N-terminal kinase 3 (JNK3) attenuates dopaminergic neuronal damage in mouse model of Parkinson’s disease. Neurochem Int 54(7):418–425. doi:10.1016/2009.01.013

    Article  CAS  PubMed  Google Scholar 

  • Park G, Yoon BS, Moon JH, Kim B, Jun EK, Oh S, Kim H, Song HJ, Noh JY, Oh C, You S (2008) Green tea polyphenol epigallocatechin-3-gallate suppresses collagen production and proliferation in keloid fibroblasts via inhibition of the STAT3-signaling pathway. J Invest Dermatol 128(10):2429–2441. doi:10.1038/2008.103

    Article  CAS  PubMed  Google Scholar 

  • Pool M, Thiemann J, Bar-Or A, Fournier AE (2008) NeuriteTracer: a novel ImageJ plugin for automated quantification of neurite outgrowth. J Neurosci Methods 168(1):134–139. doi:10.1016/2007.08.029

    Article  PubMed  Google Scholar 

  • Qu C, Li W, Shao Q, Dwyer T, Huang H, Yang T, Liu G (2013) c-Jun N-terminal kinase 1 (JNK1) is required for coordination of netrin signaling in axon guidance. J Biol Chem 288(3):1883–1895. doi:10.1074/112.417881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rallis A, Moore C, Ng J (2010) Signal strength and signal duration define two distinct aspects of JNK-regulated axon stability. Dev Biol 339(1):65–77. doi:10.1016/2009.12.016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Repici M, Mare L, Colombo A, Ploia C, Sclip A, Bonny C, Nicod P, Salmona M, Borsello T (2009) c-Jun N-terminal kinase binding domain-dependent phosphorylation of mitogen-activated protein kinase kinase 4 and mitogen-activated protein kinase kinase 7 and balancing cross-talk between c-Jun N-terminal kinase and extracellular signal-regulated kinase pathways in cortical neurons. Neuroscience 159(1):94–103. doi:10.1016/2008.11.049

    Article  CAS  PubMed  Google Scholar 

  • Ribas VT, Goncalves BS, Linden R, Chiarini LB (2012) Activation of c-Jun N-terminal kinase (JNK) during mitosis in retinal progenitor cells. PLoS ONE 7(4):e34483. doi:10.1371/0034483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song AH, Wang D, Chen G, Li Y, Luo J, Duan S, Poo MM (2009) A selective filter for cytoplasmic transport at the axon initial segment. Cell 136(6):1148–1160. doi:10.1016/2009.01.016

    Article  CAS  PubMed  Google Scholar 

  • Theus MH, Wei L, Cui L, Francis K, Hu X, Keogh C, Yu SP (2008) In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain. Exp Neurol 210(2):656–670. doi:10.1016/2007.12.020

    Article  CAS  PubMed  Google Scholar 

  • Tiwari VK, Stadler MB, Wirbelauer C, Paro R, Schubeler D, Beisel C (2012) A chromatin-modifying function of JNK during stem cell differentiation. Nat Genet 44(1):94–100. doi:10.1038/1036

    Article  CAS  Google Scholar 

  • Tonges L, Planchamp V, Koch JC, Herdegen T, Bahr M, Lingor P (2011) JNK isoforms differentially regulate neurite growth and regeneration in dopaminergic neurons in vitro. J Mol Neurosci 45(2):284–293. doi:10.1007/s12031-011-9519-1

    Article  PubMed Central  PubMed  Google Scholar 

  • van Inzen WG, Peppelenbosch MP, van den Brand MW, Tertoolen LG, de Laat SW (1996) Neuronal differentiation of embryonic stem cells. Biochim Biophys Acta 1312(1):21–26

    Article  CAS  PubMed  Google Scholar 

  • Waetzig V, Herdegen T (2003) The concerted signaling of ERK1/2 and JNKs is essential for PC12 cell neuritogenesis and converges at the level of target proteins. Mol Cell Neurosci 24(1):238–249

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Cui L, Snider BJ, Rivkin M, Yu SS, Lee CS, Adams LD, Gottlieb DI, Johnson EM Jr, Yu SP, Choi DW (2005) Transplantation of embryonic stem cells overexpressing Bcl-2 promotes functional recovery after transient cerebral ischemia. Neurobiol Dis 19(1–2):183–193. doi:10.1016/2004.12.016

    Article  CAS  PubMed  Google Scholar 

  • Weston CR, Davis RJ (2007) The JNK signal transduction pathway. Curr Opin Cell Biol 19(2):142–149. doi:10.1016/2007.02.001

    Article  CAS  PubMed  Google Scholar 

  • Wu YY, Bradshaw RA (1996) Induction of neurite outgrowth by interleukin-6 is accompanied by activation of Stat3 signaling pathway in a variant PC12 cell (E2) line. J Biol Chem 271(22):13023–13032

    Article  CAS  PubMed  Google Scholar 

  • Xiao J, Liu Y (2003) Differential roles of ERK and JNK in early and late stages of neuritogenesis: a study in a novel PC12 model system. J Neurochem 86(6):1516–1523

    Article  CAS  PubMed  Google Scholar 

  • Yao K, Ki MO, Chen H, Cho YY, Kim SH, Yu DH, Lee SY, Lee KY, Bae K, Peng C, Lim-do Y, Bode AM, Dong Z (2014) JNK1 and 2 play a negative role in reprogramming to pluripotent stem cells by suppressing Klf4 activity. Stem Cell Res 12(1):139–152. doi:10.1016/2013.10.005

    Article  CAS  PubMed  Google Scholar 

  • Yu YM, Han PL, Lee JK (2003) JNK pathway is required for retinoic acid-induced neurite outgrowth of human neuroblastoma, SH-SY5Y. NeuroReport 14(7):941–945. doi:10.1097/0000074341.81633.b8

    CAS  PubMed  Google Scholar 

  • Yu SP, Wei Z, Wei L (2013) Preconditioning strategy in stem cell transplantation therapy. Transl Stroke Res 4(1):76–88. doi:10.1007/s12975-012-0251-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou X, Song M, Chen D, Wei L, Yu SP (2011) Potential role of KCNQ/M-channels in regulating neuronal differentiation in mouse hippocampal and embryonic stem cell-derived neuronal cultures. Exp Neurol. doi:10.1016/2011.03.018

    PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health, USA (NS045810 to SPY, NS057255 and NS075338 to LW), the American Heart Association Established Investigator Award (0840110N to LW), a Grant-in-Aid award (12GRNT12060222 to SPY) and a VA national merit grant (SPY). This work was also supported by the NIH grant C06 RR015455 from the Extramural Research Facilities Program of the National Center for Research Resources.

Conflict of interest

All authors have no conflict of interest in this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Z.Z., Yu, S.P., Lee, J.H. et al. Regulatory Role of the JNK-STAT1/3 Signaling in Neuronal Differentiation of Cultured Mouse Embryonic Stem Cells. Cell Mol Neurobiol 34, 881–893 (2014). https://doi.org/10.1007/s10571-014-0067-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-014-0067-4

Keywords

Navigation