Skip to main content
Log in

Accuracy of a transcutaneous carbon dioxide pressure monitoring device in emergency room patients with acute respiratory failure

  • Physiological and Technological Notes
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

Transcutaneous CO2 monitors are widely used in neonatal ICUs. Until recently, these devices performed poorly in adults. Recent technical modifications have produced transcutaneous CO2 monitors that have performed well in adults with chronic illnesses. We evaluated the accuracy of one of these devices, the TOSCA® 500, in adults admitted to an emergency department for acute respiratory failure.

Methods

We prospectively collected 29 pairs of simultaneous transcutaneous arterial CO2 (PtcCO2) and arterial CO2 (PaCO2) values in 21 consecutive adults with acute respiratory failure (acute heart failure, n = 6; COPD exacerbation, n = 8; acute pneumonia, n = 6; and pulmonary embolism, n = 1). Agreement between PaCO2 and PtcCO2 was evaluated using the Bland-Altman method.

Results

Mean arterial oxygen saturation was 90%, arterial oxygen tension ranged from 32 to 215 mmHg, and PaCO2 ranged from 23 to 84 mmHg. The mean difference between PaCO2 and PtcCO2 was 0.1 mmHg, and the Bland-Altman limits of agreement (bias ± 1.96 SD) ranged from −6 to 6.2 mmHg. None of the patients experienced adverse effects from heating of the device clipped to the earlobe.

Conclusion

PtcCO2 showed good agreement with PaCO2 in adults with acute respiratory failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Crawford A (2004) An audit of the patient’s experience of arterial blood gas testing. Br J Nurs 13:529–532

    PubMed  Google Scholar 

  2. Zaloga GP (1990) Evaluation of bedside testing options for the critical care unit. Chest 97:185S–190S

    CAS  PubMed  Google Scholar 

  3. Thorson SH, Marini JJ, Pierson DJ, Hudson LD (1983) Variability of arterial blood gas values in stable patients in the icu. Chest 84:14–18

    Article  CAS  PubMed  Google Scholar 

  4. Eberhard P (2007) The design, use, and results of transcutaneous carbon dioxide analysis: current and future directions. Anesth Analg 105:S48–S52

    Article  PubMed  Google Scholar 

  5. Rosner V, Hannhart B, Chabot F, Polu JM (1999) Validity of transcutaneous oxygen/carbon dioxide pressure measurement in the monitoring of mechanical ventilation in stable chronic respiratory failure. Eur Respir J 13:1044–1047

    Article  CAS  PubMed  Google Scholar 

  6. Sanders MH, Kern NB, Costantino JP, Stiller RA, Strollo PJ Jr, Studnicki KA, Coates JA, Richards TJ (1994) Accuracy of end-tidal and transcutaneous pco2 monitoring during sleep. Chest 106:472–483

    Article  CAS  PubMed  Google Scholar 

  7. Cuvelier A, Grigoriu B, Molano LC, Muir JF (2005) Limitations of transcutaneous carbon dioxide measurements for assessing long-term mechanical ventilation. Chest 127:1744–1748

    Article  PubMed  Google Scholar 

  8. Maniscalco M, Zedda A, Faraone S, Carratu P, Sofia M (2008) Evaluation of a transcutaneous carbon dioxide monitor in severe obesity. Intensive Care Med 34:1340–1344

    Article  PubMed  Google Scholar 

  9. McVicar J, Eager R (2009) Validation study of a transcutaneous carbon dioxide monitor in patients in the emergency department. Emerg Med J 26:344–346

    Article  CAS  PubMed  Google Scholar 

  10. Parker SM, Gibson GJ (2007) Evaluation of a transcutaneous carbon dioxide monitor (“Tosca”) in adult patients in routine respiratory practice. Respir Med 101:261–264

    Article  CAS  PubMed  Google Scholar 

  11. Bendjelid K, Schutz N, Stotz M, Gerard I, Suter PM, Romand JA (2005) Transcutaneous pco2 monitoring in critically ill adults: clinical evaluation of a new sensor. Crit Care Med 33:2203–2206

    Article  PubMed  Google Scholar 

  12. Kagawa S, Otani N, Kamide M, Gisiger PA, Eberhard P, Severinghaus JW (2004) Initial transcutaneous PCO2 overshoot with ear probe at 42 degrees c. J Clin Monit Comput 18:343–345

    Article  PubMed  Google Scholar 

  13. Roupie EE (1997) Continuous assessment of arterial blood gases. Crit Care 1:11–14

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to A. Wolfe for helping to prepare manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.-E. Gancel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gancel, PE., Roupie, E., Guittet, L. et al. Accuracy of a transcutaneous carbon dioxide pressure monitoring device in emergency room patients with acute respiratory failure. Intensive Care Med 37, 348–351 (2011). https://doi.org/10.1007/s00134-010-2076-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-010-2076-1

Keywords

Navigation