Skip to main content

Advertisement

Log in

MicroRNA-132 targets HB-EGF upon IgE-mediated activation in murine and human mast cells

  • Research article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

MicroRNAs provide an additional layer in the regulation of gene expression acting as repressors with several targets at the posttranscriptional level. This study describes microRNA expression patterns during differentiation and activation of mast cells. The expression levels of 567 different mouse miRNAs were compared by microarray between c-Kit+ committed progenitors, mucosal mast cells, resting and IgE-crosslinked BMMCs in vitro. The strongest upregulation of miR-132 upon IgE-mediated activation was validated in human cord blood-derived mast cells as well. HB-EGF growth factor also upregulated upon activation and was ranked high by more prediction algorithms. Co-transfection of miR-132 mimicking precursor and the 3′UTR of human Hbegf-containing luciferase vector proves that the predicted binding site is functional. In line with this, neutralization of miR-132 by anti-miR inhibitor leads to sustained production of HB-EGF protein in activated mast cells. Our data provide a novel example for negative regulation of a growth factor by an upregulated miRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

3′-UTR:

3′-Untranslated region

BMMC:

Bone marrow-derived mast cell

CREB:

Cyclic AMP-response-element-binding protein

CTMC:

Connective tissue-type mast cells

DNP-HSA:

Dinitrophenyl-human serum albumin

FAM:

Fluorescein amidite

FBS:

Fetal bovine serum

FGF2:

Fibroblast growth factor 2

FYN:

Oncogene related to SRC, FGR, YES

HB-EGF:

Heparin-binding EGF-like growth factor

HER2:

Human epidermal growth factor receptor 2

IL-3:

Interleukin-3

LYN:

v-yes-1 Yamaguchi sarcoma viral related oncogene homolog

MeCP2:

Methyl CpG-binding domain protein-2

MMC:

Mucosal mast cells

mMcpt1:

Mouse Mast Cell Protease-1

NGF:

Nerve growth factor

PLC-γ:

Phospholipase C-γ

SCF:

Stem cell factor

SYK:

Spleen tyrosine kinase

TGF-β:

Transforming growth factor beta

VEGF:

Vascular endothelial growth factor

References

  1. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  PubMed  CAS  Google Scholar 

  2. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed  CAS  Google Scholar 

  3. Lodish HF, Zhou B, Liu G, Chen CZ (2008) Micromanagement of the immune system by microRNAs. Nat Rev Immunol 8:120–130

    Article  PubMed  CAS  Google Scholar 

  4. Rajewsky N (2006) MicroRNA target predictions in animals. Nat Genet 38(Suppl):S8–S13

    Article  PubMed  CAS  Google Scholar 

  5. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455:64–71

    Article  PubMed  CAS  Google Scholar 

  6. Abraham SN, St John AL (2010) Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol 10:440–452

    Article  PubMed  CAS  Google Scholar 

  7. Galli SJ, Grimbaldeston M, Tsai M (2008) Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat Rev Immunol 8:478–486

    Article  PubMed  CAS  Google Scholar 

  8. Gurish MF, Boyce JA (2006) Mast cells: ontogeny, homing, and recruitment of a unique innate effector cell. J Allergy Clin Immunol 117:1285–1291

    Article  PubMed  CAS  Google Scholar 

  9. Kashiwakura J, Xiao W, Kitaura J, Kawakami Y, Maeda-Yamamoto M, Pfeiffer JR, Wilson BS, Blank U, Kawakami T (2008) Pivotal advance: IgE accelerates in vitro development of mast cells and modifies their phenotype. J Leukoc Biol 84:357–367

    Article  PubMed  CAS  Google Scholar 

  10. Pejler G, Ronnberg E, Waern I, Wernersson S (2010) Mast cell proteases: multifaceted regulators of inflammatory disease. Blood 115:4981–4990

    Article  PubMed  CAS  Google Scholar 

  11. Metcalfe DD, Baram D, Mekori YA (1997) Mast cells. Physiol Rev 77:1033–1079

    PubMed  CAS  Google Scholar 

  12. Galli SJ, Tsai M, Piliponsky AM (2008) The development of allergic inflammation. Nature 454:445–454

    Article  PubMed  CAS  Google Scholar 

  13. Cho SH, Yao Z, Wang SW, Alban RF, Barbers RG, French SW, Oh CK (2003) Regulation of activin A expression in mast cells and asthma: its effect on the proliferation of human airway smooth muscle cells. J Immunol 170:4045–4052

    PubMed  CAS  Google Scholar 

  14. Wang SW, Oh CK, Cho SH, Hu G, Martin R, Demissie-Sanders S, Li K, Moyle M, Yao Z (2005) Amphiregulin expression in human mast cells and its effect on the primary human lung fibroblasts. J Allergy Clin Immunol 115:287–294

    Article  PubMed  CAS  Google Scholar 

  15. Marikovsky M, Breuing K, Liu PY, Eriksson E, Higashiyama S, Farber P, Abraham J, Klagsbrun M (1993) Appearance of heparin-binding EGF-like growth factor in wound fluid as a response to injury. Proc Natl Acad Sci U S A 90:3889–3893

    Article  PubMed  CAS  Google Scholar 

  16. Stoll S, Garner W, Elder J (1997) Heparin-binding ligands mediate autocrine epidermal growth factor receptor activation In skin organ culture. J Clin Invest 100:1271–1281

    Article  PubMed  CAS  Google Scholar 

  17. Tokumaru S, Higashiyama S, Endo T, Nakagawa T, Miyagawa JI, Yamamori K, Hanakawa Y, Ohmoto H, Yoshino K, Shirakata Y, Matsuzawa Y, Hashimoto K, Taniguchi N (2000) Ectodomain shedding of epidermal growth factor receptor ligands is required for keratinocyte migration in cutaneous wound healing. J Cell Biol 151:209–220

    Article  PubMed  CAS  Google Scholar 

  18. Xie H, Wang H, Tranguch S, Iwamoto R, Mekada E, Demayo FJ, Lydon JP, Das SK, Dey SK (2007) Maternal heparin-binding-EGF deficiency limits pregnancy success in mice. Proc Natl Acad Sci USA 104:18315–18320

    Article  PubMed  CAS  Google Scholar 

  19. Iwamoto R, Yamazaki S, Asakura M, Takashima S, Hasuwa H, Miyado K, Adachi S, Kitakaze M, Hashimoto K, Raab G, Nanba D, Higashiyama S, Hori M, Klagsbrun M, Mekada E (2003) Heparin-binding EGF-like growth factor and ErbB signaling is essential for heart function. Proc Natl Acad Sci USA 100:3221–3226

    Article  PubMed  CAS  Google Scholar 

  20. Ongusaha PP, Kwak JC, Zwible AJ, Macip S, Higashiyama S, Taniguchi N, Fang L, Lee SW (2004) HB-EGF is a potent inducer of tumor growth and angiogenesis. Cancer Res 64:5283–5290

    Article  PubMed  CAS  Google Scholar 

  21. Nakata A, Miyagawa J, Yamashita S, Nishida M, Tamura R, Yamamori K, Nakamura T, Nozaki S, Kameda-Takemura K, Kawata S, Taniguchi N, Higashiyama S, Matsuzawa Y (1996) Localization of heparin-binding epidermal growth factor-like growth factor in human coronary arteries. Possible roles of HB-EGF in the formation of coronary atherosclerosis. Circulation 94:2778–2786

    PubMed  CAS  Google Scholar 

  22. Higashiyama S, Abraham JA, Klagsbrun M (1993) Heparin-binding EGF-like growth factor stimulation of smooth muscle cell migration: dependence on interactions with cell surface heparan sulfate. J Cell Biol 122:933–940

    Article  PubMed  CAS  Google Scholar 

  23. Raab G, Klagsbrun M (1997) Heparin-binding EGF-like growth factor. Biochim Biophys Acta 1333:F179–F199

    PubMed  CAS  Google Scholar 

  24. Knight PA, Brown JK, Wright SH, Thornton EM, Pate JA, Miller HR (2007) Aberrant mucosal mast cell protease expression in the enteric epithelium of nematode-infected mice lacking the integrin alphavbeta6, a transforming growth factor-beta1 activator. Am J Pathol 171:1237–1248

    Article  PubMed  CAS  Google Scholar 

  25. Miller HR, Wright SH, Knight PA, Thornton EM (1999) A novel function for transforming growth factor-beta1: upregulation of the expression and the IgE-independent extracellular release of a mucosal mast cell granule-specific beta-chymase, mouse mast cell protease-1. Blood 93:3473–3486

    PubMed  CAS  Google Scholar 

  26. Gilicze A, Kohalmi B, Pocza P, Keszei M, Jaeger J, Gorbe E, Papp Z, Toth S, Falus A, Wiener Z (2007) HtrA1 is a novel mast cell serine protease of mice and men. Mol Immunol 44:2961–2968

    Article  PubMed  CAS  Google Scholar 

  27. Wiener Z, Pocza P, Racz M, Nagy G, Tolgyesi G, Molnar V, Jaeger J, Buzas E, Gorbe E, Papp Z, Rigo J, Falus A (2008) IL-18 induces a marked gene expression profile change and increased Ccl1 (I-309) production in mouse mucosal mast cell homologs. Int Immunol 20:1565–1573

    Article  PubMed  CAS  Google Scholar 

  28. Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, Newman J, Bronson RT, Crowley D, Stone JR, Jaenisch R, Sharp PA, Jacks T (2008) Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132:875–886

    Article  PubMed  CAS  Google Scholar 

  29. Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J, Henderson JM, Kutok JL, Rajewsky K (2008) Lymphoproliferative disease and autoimmunity in mice with increased miR-17–92 expression in lymphocytes. Nat Immunol 9:405–414

    Article  PubMed  CAS  Google Scholar 

  30. Hashimi ST, Fulcher JA, Chang MH, Gov L, Wang S, Lee B (2009) MicroRNA profiling identifies miR-34a and miR-21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation. Blood 114:404–414

    Article  PubMed  CAS  Google Scholar 

  31. Navarro F, Gutman D, Meire E, Caceres M, Rigoutsos I, Bentwich Z, Lieberman J (2009) miR-34a contributes to megakaryocytic differentiation of K562 cells independently of p53. Blood 114:2181–2192

    Article  PubMed  CAS  Google Scholar 

  32. O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D (2010) Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10:111–122

    Article  PubMed  Google Scholar 

  33. Lu TX, Munitz A, Rothenberg ME (2009) MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol 182:4994–5002

    Article  PubMed  CAS  Google Scholar 

  34. Pase L, Layton JE, Kloosterman WP, Carradice D, Waterhouse PM, Lieschke GJ (2009) miR-451 regulates zebrafish erythroid maturation in vivo via its target gata2. Blood 113:1794–1804

    Article  PubMed  CAS  Google Scholar 

  35. Zhan M, Miller CP, Papayannopoulou T, Stamatoyannopoulos G, Song CZ (2007) MicroRNA expression dynamics during murine and human erythroid differentiation. Exp Hematol 35:1015–1025

    Article  PubMed  CAS  Google Scholar 

  36. Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86

    Article  PubMed  CAS  Google Scholar 

  37. Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, Bozzoni I (2005) A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123:819–831

    Article  PubMed  CAS  Google Scholar 

  38. Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, Brummelkamp TR, Fleming MD, Camargo FD (2008) Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451:1125–1129

    Article  PubMed  CAS  Google Scholar 

  39. Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103:12481–12486

    Article  PubMed  CAS  Google Scholar 

  40. Fontana L, Pelosi E, Greco P, Racanicchi S, Testa U, Liuzzi F, Croce CM, Brunetti E, Grignani F, Peschle C (2007) MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol 9:775–787

    Article  PubMed  CAS  Google Scholar 

  41. McCurdy JD, Lin TJ, Marshall JS (2001) Toll-like receptor 4-mediated activation of murine mast cells. J Leukoc Biol 70:977–984

    PubMed  CAS  Google Scholar 

  42. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63

    Article  PubMed  CAS  Google Scholar 

  43. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    Article  PubMed  CAS  Google Scholar 

  44. Arinobu Y, Iwasaki H, Gurish MF, Mizuno S, Shigematsu H, Ozawa H, Tenen DG, Austen KF, Akashi K (2005) Developmental checkpoints of the basophil/mast cell lineages in adult murine hematopoiesis. Proc Natl Acad Sci USA 102:18105–18110

    Article  PubMed  CAS  Google Scholar 

  45. Chen CC, Grimbaldeston MA, Tsai M, Weissman IL, Galli SJ (2005) Identification of mast cell progenitors in adult mice. Proc Natl Acad Sci USA 102:11408–11413

    Article  PubMed  CAS  Google Scholar 

  46. Jamur MC, Grodzki AC, Berenstein EH, Hamawy MM, Siraganian RP, Oliver C (2005) Identification and characterization of undifferentiated mast cells in mouse bone marrow. Blood 105:4282–4289

    Article  PubMed  CAS  Google Scholar 

  47. Kitamura Y, Shimada M, Hatanaka K, Miyano Y (1977) Development of mast cells from grafted bone marrow cells in irradiated mice. Nature 268:442–443

    Article  PubMed  CAS  Google Scholar 

  48. Rodewald HR, Dessing M, Dvorak AM, Galli SJ (1996) Identification of a committed precursor for the mast cell lineage. Science 271:818–822

    Article  PubMed  CAS  Google Scholar 

  49. Dore LC, Amigo JD, Dos Santos CO, Zhang Z, Gai X, Tobias JW, Yu D, Klein AM, Dorman C, Wu W, Hardison RC, Paw BH, Weiss MJ (2008) A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc Natl Acad Sci USA 105:3333–3338

    Article  PubMed  CAS  Google Scholar 

  50. Migliaccio AR, Rana RA, Sanchez M, Lorenzini R, Centurione L, Bianchi L, Vannucchi AM, Migliaccio G, Orkin SH (2003) GATA-1 as a regulator of mast cell differentiation revealed by the phenotype of the GATA-1low mouse mutant. J Exp Med 197:281–296

    Article  PubMed  CAS  Google Scholar 

  51. Monticelli S, Ansel KM, Xiao C, Socci ND, Krichevsky AM, Thai TH, Rajewsky N, Marks DS, Sander C, Rajewsky K, Rao A, Kosik KS (2005) MicroRNA profiling of the murine hematopoietic system. Genome Biol 6:R71

    Article  PubMed  Google Scholar 

  52. Mayoral RJ, Pipkin ME, Pachkov M, van Nimwegen E, Rao A, Monticelli S (2009) MicroRNA-221–222 regulate the cell cycle in mast cells. J Immunol 182:433–445

    PubMed  CAS  Google Scholar 

  53. Cheng HY, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP, Nakazawa T, Shimizu K, Okamura H, Impey S, Obrietan K (2007) MicroRNA modulation of circadian-clock period and entrainment. Neuron 54:813–829

    Article  PubMed  CAS  Google Scholar 

  54. Klein ME, Lioy DT, Ma L, Impey S, Mandel G, Goodman RH (2007) Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat Neurosci 10:1513–1514

    Article  PubMed  CAS  Google Scholar 

  55. Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, Impey S (2005) A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci USA 102:16426–16431

    Article  PubMed  CAS  Google Scholar 

  56. Wayman GA, Davare M, Ando H, Fortin D, Varlamova O, Cheng HY, Marks D, Obrietan K, Soderling TR, Goodman RH, Impey S (2008) An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci USA 105:9093–9098

    Article  PubMed  CAS  Google Scholar 

  57. Strum JC, Johnson JH, Ward J, Xie H, Feild J, Hester A, Alford A, Waters KM (2009) MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1. Mol Endocrinol 23:1876–1884

    Article  PubMed  CAS  Google Scholar 

  58. Fiedler SD, Carletti MZ, Hong X, Christenson LK (2008) Hormonal regulation of MicroRNA expression in periovulatory mouse mural granulosa cells. Biol Reprod 79:1030–1037

    Article  PubMed  CAS  Google Scholar 

  59. Ucar A, Vafaizadeh V, Jarry H, Fiedler J, Klemmt PA, Thum T, Groner B, Chowdhury K (2010) miR-212 and miR-132 are required for epithelial stromal interactions necessary for mouse mammary gland development. Nat Genet 42:1101–1108

    Article  PubMed  CAS  Google Scholar 

  60. Lagos D, Pollara G, Henderson S, Gratrix F, Fabani M, Milne RS, Gotch F, Boshoff C (2010) miR-132 regulates antiviral innate immunity through suppression of the p300 transcriptional co-activator. Nat Cell Biol 12:513–519

    Article  PubMed  CAS  Google Scholar 

  61. Shaked I, Meerson A, Wolf Y, Avni R, Greenberg D, Gilboa-Geffen A, Soreq H (2009) MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity 31:965–973

    Article  PubMed  CAS  Google Scholar 

  62. Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD, Shimizu M, Cimmino A, Zupo S, Dono M, Dell’Aquila ML, Alder H, Rassenti L, Kipps TJ, Bullrich F, Negrini M, Croce CM (2004) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 101:11755–11760

    Article  PubMed  CAS  Google Scholar 

  63. Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EK (2008) Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther 10:R101

    Article  PubMed  Google Scholar 

  64. Masuda A, Hashimoto K, Yokoi T, Doi T, Kodama T, Kume H, Ohno K, Matsuguchi T (2007) Essential role of GATA transcriptional factors in the activation of mast cells. J Immunol 178:360–368

    PubMed  CAS  Google Scholar 

  65. Gregory GD, Raju SS, Winandy S, Brown MA (2006) Mast cell IL-4 expression is regulated by Ikaros and influences encephalitogenic Th1 responses in EAE. J Clin Invest 116:1327–1336

    Article  PubMed  CAS  Google Scholar 

  66. Lee J, Li Z, Brower-Sinning R, John B (2007) Regulatory circuit of human microRNA biogenesis. PLoS Comput Biol 3:e67

    Article  PubMed  Google Scholar 

  67. Anand S, Majeti BK, Acevedo LM, Murphy EA, Mukthavaram R, Scheppke L, Huang M, Shields DJ, Lindquist JN, Lapinski PE, King PD, Weis SM, Cheresh DA (2010) MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat Med 16:909–914

    Article  PubMed  CAS  Google Scholar 

  68. Benayoun L, Druilhe A, Dombret MC, Aubier M, Pretolani M (2003) Airway structural alterations selectively associated with severe asthma. Am J Respir Crit Care Med 167:1360–1368

    Article  PubMed  Google Scholar 

  69. Tamaoka M, Hassan M, McGovern T, Ramos-Barbon D, Jo T, Yoshizawa Y, Tolloczko B, Hamid Q, Martin JG (2008) The epidermal growth factor receptor mediates allergic airway remodelling in the rat. Eur Respir J 32:1213–1223

    Article  PubMed  CAS  Google Scholar 

  70. Tsuchiya K, Jo T, Takeda N, Al Heialy S, Siddiqui S, Shalaby KH, Risse PA, Maghni K, Martin JG (2010) EGF receptor activation during allergic sensitization affects IL-6-induced T-cell influx to airways in a rat model of asthma. Eur J Immunol 40:1590–1602

    Article  PubMed  CAS  Google Scholar 

  71. Ushikoshi H, Takahashi T, Chen X, Khai NC, Esaki M, Goto K, Takemura G, Maruyama R, Minatoguchi S, Fujiwara T, Nagano S, Yuge K, Kawai T, Murofushi Y, Fujiwara H, Kosai K (2005) Local overexpression of HB-EGF exacerbates remodeling following myocardial infarction by activating noncardiomyocytes. Lab Invest 85:862–873

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Research Foundation of the Hungarian Academy of Sciences (grant OTKA 67955).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Molnár.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5511 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molnár, V., Érsek, B., Wiener, Z. et al. MicroRNA-132 targets HB-EGF upon IgE-mediated activation in murine and human mast cells. Cell. Mol. Life Sci. 69, 793–808 (2012). https://doi.org/10.1007/s00018-011-0786-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0786-3

Keywords

Navigation