Wide-area transepithelial sampling in adjunct to forceps biopsy increases the absolute detection rates of Barrett’s oesophagus and oesophageal dysplasia: a meta-analysis and systematic review

Vishnu Charan Suresh Kumar, Prateek Harne, Venkata Suresh Patthipati, Abinash Subedi, Umair Masood, Anuj Sharma, Faith Goyal, Nancy Aggarwal, Bishnu Sapkota

ABSTRACT

Background Wide-area transepithelial sampling (WATS) is a new technique that uses an abrasive brush to obtain samples from a larger surface area of the oesophagus. Studies have shown promising results that WATS in adjunct to forceps biopsy (FB) increases the detection rate of Barrett’s oesophagus (BE) as well as oesophageal dysplasia (ED). We conducted a systematic review and meta-analysis to compare the detection rates of BE and ED between FB and WATS in adjunct to FB.

Methods A Literature search was done using electronic databases, including PubMed, Embase, Scopus, Cochrane and CINAHL from inception to 26 April 2020. A meta-analysis comparing detection rates of WATS in adjunct to FB versus FB using the random-effects model was done using RevMan V.5.3.

Results Pooled data from 20392 endoscopies across 11 studies showed an absolute increase in detection of 16% (95% CI 0.10% to 0.22%, p=0.00001). A relative increase of 1.62 was seen in detection rates of BE (95% CI 1.28 to 2.05, p<0.0001) when WATS was used with FB with the number needed to test (NNT) of 6.1 patients. For ED, a 2% absolute increase (95% CI 0.01 to 0.03, p=0.001) in additional diagnostic yield from WATS. A relative increase of 2.05 was seen in the detection rate of ED (95% CI 1.42 to 2.98, p=0.0001) yielding an NNT of 50 patients.

Conclusion Our study shows that WATS, as an adjunct to FB, improves both the absolute detection rate and relative detection rate of both BE and ED as compared to FB alone.

INTRODUCTION

Barrett’s oesophagus (BE) is a condition where the normal stratified squamous epithelium is replaced by columnar epithelium. This process of replacement of one normal tissue with another is called metaplasia. An estimated 5.6% of adults in the USA have BE. The incidence of BE in the UK was found to be 27.7/100 000 person-years and in the Netherlands 31.4/100 000 person-years. The pathogenesis of Barrett metaplasia begins with an insult due to gastro-oesophageal reflux of acid and bile that damage oesophageal squamous cells. It is not entirely known why the body repairs through the process of columnar metaplasia rather than by regeneration of squamous epithelium. BE is a strong risk factor for oesophageal adenocarcinoma (EAC), with the absolute annual risk of 0.09%–0.33%. Screening patients with long-standing GERD symptoms for BE and surveillance patients with BE with a regular endoscopic evaluation to detect curable neoplasia has been the usual practice. Studies have shown that patients who underwent surveillance had earlier-stage tumours and higher survival rates than those whose tumours are discovered later after the development of symptoms such as dysphagia or weight loss. Current society guidelines recommend endoscopic screening for BE in patients with chronic GERD symptoms who have at least one additional risk factor such as age >50 years, Caucasian race, male sex, hiatal hernia, elevated body mass index or tobacco use.

Currently, the screening is done by random four-quadrant biopsies which are taken every 1–2 cm throughout the BE segment. This technique may miss early lesions along with being time-consuming. It obtains samples only from ~5% of the total area of BE. Wide-area transepithelial sampling (WATS) with computer-assisted three-dimensional (3D) analysis (WATS3D; CDx Diagnostics, Suffern, New York, USA) is a novel technique that combines an abrasive brush biopsy sampling, followed by computer-assisted pathology
analysis. Recent studies have evaluated WATS3D as an adjunctive tool to Seattle protocol biopsies and found that there was an incremental yield in detection rates of both BE and oesophageal dysplasia (ED).16–19 Although it has been gaining popularity, it is still not widely incorporated across the USA. We decided to do a meta-analysis to compare the detection rates of BE and ED between forceps biopsy (FB) and WATS in adjunct to FB in patients who underwent endoscopy.

METHODS
Search strategy
A comprehensive search of databases, including EMBASE, PubMed, SCOPUS, CINAHL and Cochrane databases from inception to 26 April 2020, was conducted. An expert medical librarian helped conduct the literature search with inputs from the study authors. Keywords used in the search included a combination of “wide area transepithelial sampling” OR “WATS” OR “Transepithelial sampling” AND “Barrett’s esophagus.” Our study was registered in OSF and we used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines and a predefined protocol, to identify studies reporting usage of WATS in BE. We restricted our search to studies published in peer-reviewed journals or presented as abstracts at national society meetings. Based on preset inclusion and exclusion criteria, three authors (VCSK, AS and PH) independently reviewed the studies, and all studies that did not address this topic were excluded. The selected articles were reviewed to ascertain if they contained the necessary relevant data. The bibliographic sections were searched for similar studies. Any discrepancy in including studies was resolved by a coauthor (VSP).

Study selection
We included studies that met our inclusion criteria, which included (1) patients with BE (2) age \geq18 years (3) use of WATS as an adjunct to FB (4) data on the diagnostic yield of both FB and WATS. We only included studies that were in English and met all our inclusion criteria. Our exclusion criteria included (1) no data on diagnostic yield, (2) age <18 years, (3) no data on additional yield of WATS and (4) case reports. Studies that had any one of these were excluded.

Data abstraction and quality assessment
A data extraction sheet was created, and the study characteristics, data on intended outcomes and patient characteristics were collected. VCSK and AS independently extracted data. All the data were reviewed by a coauthor (VSP) for potential discrepancies and were resolved.

The quality of included studies was determined objectively using a scale based on the Newcastle-Ottawa scale for meta-analysis. The scale consisted of six questions, and each received 0, 1 or 2 points if the study had adequately met the criteria. We considered a total score of 26, 3–5 and <2 as high, fair and poor quality, respectively. Two authors (VCSK and AS) independently assessed the quality of the studies. The senior author (BS) reviewed the final quality assessment table and resolved any discrepancies.

Outcomes
The primary outcome of the study was to analyse the incremental yield in the detection rates of BE and ED by WATS when used as an adjunct to FB. This was done by calculating the absolute and relative increase in detection rates of BE and ED, respectively, while using WATS with FB as compared with using FB alone. The relative increase in reduction rate is defined as the relative odds of detecting BE and ED by using WATS in conjunction to FB versus FB alone; while the absolute increase in detection rate is defined as the absolute difference of detection rates between WATS with FB and FB alone.

Statistical analysis
We performed a meta-analysis to calculate the absolute and relative increase in detection rate separately for BE and ED using Mantel-Haenszel statistical method with a random-effects model in all screening and/or surveillance endoscopies. For all practical purposes, the relative increase in detection rate is shown as risk ratio (RR) and absolute increase in detection rate was shown as risk difference (RD) in the Forrest plots generated using RevMan V.5.3 software. We assessed the heterogeneity between studies-specific estimates using the I^2 statistic calculated. Publication bias was determined qualitatively by visually inspecting the funnel plot. Egger’s test was performed for objective evidence of publication bias for BE but not for ED as the number of studies were small (<10).

RESULTS
Search results and population characteristics
A total of 267 studies were identified using our search strategy, of which 99 studies were removed after initial screening for duplicates, review articles, and surveys. A further 141 studies were removed after reviewing the title and abstract. Of the total 27 studies assessed in their entirety, 15 were excluded and 12 were included in the final analysis based on our exclusion and inclusion criteria (figure 1). Eleven studies (excluding study no.12) and nine studies (excluding study nos. 3,7,11) were included in the analysis for BE and ED, respectively. The excluded studies did not have adequate data for the respective analysis. The study characteristics are shown in table 1.

Analysis of diagnostic yield of WATS as an adjunct to FB
For BE, combined data from 20,392 screening endoscopies across 11 studies showed a significant increase in the absolute and relative detection rates. A total of 6643 lesions (intestinal metaplasia) were identified when WATS was used with FB versus 3310 with FB alone; an additional 3333 lesions (intestinal metaplasia) were identified when WATS was used with FB as compared with using FB alone. The relative increase in detection was 16% (measured as RD -0.16, 95% CI 0.10–0.33, $p<0.001$; RR 1.16, 95% CI 1.10–1.23, $p<0.001$) and the absolute increase in detection rate was 3310 lesions as compared with FB-alone. The heterogeneity between studies was low ($I^2 = 0.0\%$) and no evidence of publication bias was detected. The analysis for ED showed a similar trend, with a relative increase of 16% (measured as RD -0.09, 95% CI 0.07–0.12, $p<0.001$; RR 1.16, 95% CI 1.10–1.23, $p<0.001$) and the absolute increase in detection rate was 3310 lesions as compared with FB-alone. The heterogeneity between studies was low ($I^2 = 0.0\%$) and no evidence of publication bias was detected.
to 0.22, p<0.00001) and a 1.62 times relative increase in detection rates of BE (measured as RR −1.62, 95% CI 1.28 to 2.05, p<0.0001) with a number needed to test (NNT) of 6.1 when WATS was used in adjunct with FB (figure 2).

There is a significant increase in absolute and relative detection rates for ED as well. Out of the 19,950 screening and surveillance endoscopies done in dysplasia naïve patients across nine studies, 533 lesions (dysplasia) were identified with WATS combined with FB vs 213 lesions with FB alone. With 320 more lesions identified, it translates to a marginal 2% but significant absolute increase (measured as RD 0.02, 95% CI 0.01 to 0.03, p=0.001) in additional diagnostic yield from WATS. There is a 2.05 times relative increase in the detection rate of ED (measured as RR 2.05, 95% CI 1.42 to 2.98, p=0.0001) yielding an NNT of 50 patients (figure 3).

Study quality assessment

We have used published data from both peer-reviewed articles and abstracts presented at national conferences. For BE, data extracted from four articles and seven abstracts were used. Three studies have at least sample sizes >1000, seven studies have sample sizes between 100 and 1000 and 1 study <100. For ED, data extracted from five articles and four abstracts were used. Three studies have at least sample sizes >1000, with the largest study having a sample size of 12,899, six studies have sample sizes between 100 and 1000. Based on the quality assessment scale, seven studies were of high and five were of fair quality. No study was poor in quality. Smith et al contributed approximately greater than 60% of the data in this study (table 2).

Validation of meta-analysis results

We validated the meta-analysis results using sensitivity analysis, a test of heterogeneity and the assessment of publication bias.

For sensitivity analysis, the effect on the summary estimate was analysed by excluding one study at a time iteratively. No one study had a major impact on the outcome or heterogeneity. Based on I² analysis, there was considerable heterogeneity of >75% in all four meta-analyses as noted in our forest plots. There was some evidence of a publication bias based on the inspection of the funnel plots which can be attributed to the benefit of using WATS in conjunction with FB (figure 4A,B). Egger’s test for BE studies showed that there was no evidence of bias (p=0.98).

DISCUSSION

Our meta-analysis showed that WATS performed along with FB significantly increased the diagnostic yield of both BE as well as ED. This was found to be true in both the patients who underwent screening and those who underwent surveillance endoscopies. This is in line with studies that have been done so far. Our results indicate a minimum of 16% increase (construed from RD) and a maximum of 62% increase (construed from RR) in the detection rate of BE. However, it is also important to note that there is only a marginal 2% absolute increase in the detection of ED. This marginal increase in the detection rate for ED can be attributed to the relatively fewer proportion of ED cases with respect to the total number of BE cases. Nevertheless, there is a 105% increase (construed from RR) in the detection rate of ED indicating a strong likelihood of detection with the general

Figure 1 Study flow diagram.
Table 1 Study characteristics

<table>
<thead>
<tr>
<th>S. no</th>
<th>Study</th>
<th>Year</th>
<th>Country</th>
<th>Abstract-0 full paper-1</th>
<th>Total no of procedures</th>
<th>Total no of patients</th>
<th>Men</th>
<th>Women</th>
<th>Mean age (years)</th>
<th>Forceps Biopsy</th>
<th>Additional yield with WATS</th>
<th>WATS+FB BE</th>
<th>FB dysplasia</th>
<th>Additional yield with WATS</th>
<th>WATS+FB dysplasia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Anandasabapathy et al</td>
<td>2011</td>
<td>USA</td>
<td>1</td>
<td>151</td>
<td>151</td>
<td>124</td>
<td>27</td>
<td>65</td>
<td>28</td>
<td>69</td>
<td>97</td>
<td>38</td>
<td>16</td>
<td>54</td>
</tr>
<tr>
<td>2</td>
<td>Bitner et al</td>
<td>2017</td>
<td>USA</td>
<td>0</td>
<td>120</td>
<td>74</td>
<td>65</td>
<td>9</td>
<td>66.3</td>
<td>20</td>
<td>15</td>
<td>35</td>
<td>14</td>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>Cotton et al</td>
<td>2019</td>
<td>USA</td>
<td>0</td>
<td>454</td>
<td>454</td>
<td>163</td>
<td>291</td>
<td>NA</td>
<td>244</td>
<td>87</td>
<td>331</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>4</td>
<td>Gross et al</td>
<td>2017</td>
<td>USA</td>
<td>1</td>
<td>4203</td>
<td>4203</td>
<td>1807</td>
<td>2396</td>
<td>59</td>
<td>594</td>
<td>493</td>
<td>799</td>
<td>26</td>
<td>23</td>
<td>33</td>
</tr>
<tr>
<td>5</td>
<td>Iorio et al</td>
<td>2015</td>
<td>USA</td>
<td>0</td>
<td>208</td>
<td>110</td>
<td>58</td>
<td>52</td>
<td>63</td>
<td>37</td>
<td>24</td>
<td>61</td>
<td>7</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>Johanson et al</td>
<td>2010</td>
<td>USA</td>
<td>1</td>
<td>1183</td>
<td>1183</td>
<td>674</td>
<td>509</td>
<td>58</td>
<td>344</td>
<td>139</td>
<td>483</td>
<td>16</td>
<td>14</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>Kataria et al</td>
<td>2013</td>
<td>USA</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td>27</td>
<td>13</td>
<td>62.3</td>
<td>11</td>
<td>4</td>
<td>15</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>8</td>
<td>Kim et al</td>
<td>2014</td>
<td>USA</td>
<td>0</td>
<td>113</td>
<td>113</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>9</td>
<td>Smith et al</td>
<td>2018</td>
<td>USA</td>
<td>1</td>
<td>12899</td>
<td>12899</td>
<td>5031</td>
<td>7868</td>
<td>56</td>
<td>1684</td>
<td>2570</td>
<td>4295</td>
<td>88</td>
<td>213</td>
<td>301</td>
</tr>
<tr>
<td>10</td>
<td>Smith et al</td>
<td>2019</td>
<td>USA</td>
<td>0</td>
<td>913</td>
<td>802</td>
<td>289</td>
<td>513</td>
<td>67</td>
<td>228</td>
<td>156</td>
<td>384</td>
<td>15</td>
<td>38</td>
<td>53</td>
</tr>
<tr>
<td>11</td>
<td>Srinivasan et al</td>
<td>2019</td>
<td>USA</td>
<td>0</td>
<td>108</td>
<td>108</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>12</td>
<td>Vennalaganti et al</td>
<td>2018</td>
<td>USA</td>
<td>1</td>
<td>160</td>
<td>160</td>
<td>122</td>
<td>38</td>
<td>63.4</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>7</td>
<td>23</td>
<td>30</td>
</tr>
</tbody>
</table>

BE, Barrett’s oesophagus; FB, forceps biopsy; NA, not applicable; WATS, wide-area transepithelial sampling.
were newly diagnosed with BE, around 131 new cases of EAC were identified. The risk of death from EAC was not found to be lower in patients who underwent surveillance for BE. This calls into question our current surveillance methods and techniques for BE as well as emphasises the need for much larger prospective RCTs on the subject to potentially eliminate lead time bias.

Docimo et al commented on the safety profile of the WATS procedure by conducting a retrospective analysis in March 2019 with no adverse event reported secondary to WATS.27

Currently, there are no large-scale studies that have analysed cost-effectiveness of WATS. Singer et al described an analytical model which suggested screening with WATS when used with the Seattle protocol was more cost-effective as compared with the Seattle protocol alone. However, multicentre international studies on the cost-effectiveness are warranted in order to establish its feasibility at a larger scale.28

Recent guidelines by ASGE state that WATS can be used as an adjunct to FB in patients with known BE or suspected BE when compared with white light endoscopy

Figure 2 Forest plots comparing WATS+FB versus FB for Barrett’s oesophagus. (A) Relative increase in detection rate. (B) Absolute increase in detection rate. FB, forceps biopsy; M-H, Mantel-Haenszel Equation; WATS, wide-area transepithelial sampling.

Figure 3 Forest plots comparing WATS+FB versus FB for oesophageal dysplasia. (A) Relative increase in detection rate. (B) Absolute increase in detection rate. FB, forceps biopsy; M-H, Mantel-Haenszel Equation; WATS, wide-area transepithelial sampling.
and FB. This was a conditional recommendation based on low-quality evidence.

WATS as a stand-alone tool has not been studied in great lengths. A recent multicentre prospective trial conducted by DeMeester et al. comparing WATS with standard FB reported similar frequency of detecting intestinal metaplasia overall which was published as an abstract only. Further research into WATS as an independent screening and diagnostic modality is warranted to validate its use as a stand-alone procedure. While there is suggestive evidence regarding increased diagnostic yield with HGD, similar data for LGD is lacking and so is their comparison. Additionally, there seem to be lack of concurrent data in these studies on the Prague classification which can help define the area of BE and prevent false positives.

To the best of our knowledge, this is the largest and most comprehensive meta-analysis done on this topic to date. Our study is also the first meta-analysis to compare the usage of WATS as an adjunct to FB as compared with FB alone in the diagnosis of BE.

There are limitations to our study. All the studies were from the USA. Lack of studies from other countries means that generalisability outside the USA is still not known until further studies are done involving non-USA population groups. We did not include studies published in other languages and this might have led to omission of certain studies. Most of the studies were done at

<table>
<thead>
<tr>
<th>S. no</th>
<th>Study</th>
<th>Representative of the average adult in the community (1-multicentre, 0-single centre)</th>
<th>Cohort size (2>100, 1-30-100, 0-<30)</th>
<th>Abstract-full paper</th>
<th>Definite information of histologic diagnosis (1-Reported with clarity, 0-not reported)</th>
<th>Attrition rate (2-all patients included, 1-<50% not included, >50% not included)</th>
<th>Information reported on adverse events (1-reported, 0-not reported)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Anandasabapathy et al 16</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Bittner et al 22</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Cotton et al 33</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Gross et al 17</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Iorio et al 34</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Johanson et al 18</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>Kataria et al 35</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>Kim et al 16</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>Smith et al 2018 19</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>Smith et al 2019 30</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>Srinivasan et al 37</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>Vennalaganti et al 31</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Adapted from Wells et al. 38

and FB. This was a conditional recommendation based on low-quality evidence.

WATS as a stand-alone tool has not been studied in great lengths. A recent multicentre prospective trial conducted by DeMeester et al. comparing WATS with standard FB reported similar frequency of detecting intestinal metaplasia overall which was published as an abstract only. Further research into WATS as an independent screening and diagnostic modality is warranted to validate its use as a stand-alone procedure. While there is suggestive evidence regarding increased diagnostic yield with HGD, similar data for LGD is lacking and so is their comparison. Additionally, there seem to be lack of concurrent data in these studies on the Prague classification which can help define the area of BE and prevent false positives.

To the best of our knowledge, this is the largest and most comprehensive meta-analysis done on this topic to date. Our study is also the first meta-analysis to compare the usage of WATS as an adjunct to FB as compared with FB alone in the diagnosis of BE.

There are limitations to our study. All the studies were from the USA. Lack of studies from other countries means that generalisability outside the USA is still not known until further studies are done involving non-USA population groups. We did not include studies published in other languages and this might have led to omission of certain studies. Most of the studies were done at

<table>
<thead>
<tr>
<th>S. no</th>
<th>Study</th>
<th>Representative of the average adult in the community (1-multicentre, 0-single centre)</th>
<th>Cohort size (2>100, 1-30-100, 0-<30)</th>
<th>Abstract-full paper</th>
<th>Definite information of histologic diagnosis (1-Reported with clarity, 0-not reported)</th>
<th>Attrition rate (2-all patients included, 1-<50% not included, >50% not included)</th>
<th>Information reported on adverse events (1-reported, 0-not reported)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Anandasabapathy et al 16</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Bittner et al 22</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Cotton et al 33</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Gross et al 17</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Iorio et al 34</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Johanson et al 18</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>Kataria et al 35</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>Kim et al 16</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>Smith et al 2018 19</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>Smith et al 2019 30</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>Srinivasan et al 37</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>Vennalaganti et al 31</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Adapted from Wells et al. 38

Figure 4 Funnel plots for assessment of publication bias. (A) Barrett’s oesophagus. (B) Oesophageal dysplasia.
CONCLUSION

Our study shows that WATS, as an adjunct to FB, improves both the absolute detection rate and relative detection rate of both BE and ED as compared with FB alone. Although current data are promising, further multicentre, international, prospective studies are required before widespread usage of WATS is adopted.

Author affiliations

1 Department of Internal Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
2 Department of Internal Medicine, Trumbull Regional Medical Center, Warren, Ohio, USA
3 Division of Gastroenterology, SUNY Upstate Medical University, Syracuse, New York, USA
4 Department of Electronics and Communication Engineering, Maharaja Agrasen Institute of Technology, Delhi, India
5 Department of Physics, Northwestern University, Evanston, Illinois, USA
6 Division of Gastroenterology, Syracuse VA Medical Center, Syracuse, New York, USA

Acknowledgements

We would like to acknowledge our librarian Rebecca Kindon for her help with the literature search.

Contributors

VCKS (Conceptualisation: Lead; Data curation: Lead; Methodology: Equal; Project administration: Equal; Resources: Lead; Writing—original draft: Lead; Writing—review and editing: Lead), PH (Resources: Equal; Writing—original draft: Lead; Writing—review and editing: Lead), BSR (Resources: Lead; Writing—original draft: Lead; Writing—review and editing: Lead), AS (Data curation: Lead; Methodology: Equal; Resources: Equal), UM (Conceptualisation; Supporting; Resources: Supporting; Writing—review and editing: Supporting), AS (Resources: Supporting; Supervision: Supporting; Writing—review and editing: Supporting), FG (Formal analysis: Support, Validation: support), NA (Formal analysis: Support, Validation: support), BS (Conceptualisation: Equal; Methodology: Equal; Project administration: Lead; Resources: Lead; Supervision: Lead; Validation: Equal; Writing—original draft: Supporting; Writing—review and editing: Equal), GM (Formal analysis: Equal; Writing—original draft: Equal; Writing—review and editing: Equal).

Funding

The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests

None declared.

Patient consent for publication

Not required.

Provenance and peer review

Not commissioned; externally peer reviewed.

Data availability statement

All data relevant to the study are included in the article or uploaded as online supplemental information.

Open access

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD

Vishnu Charan Suresh Kumar http://orcid.org/0000-0002-9472-2869

REFERENCES

Smith MS, Kaul V, Odze R. Sa1144 – wide area transepithelial sampling improves detection of intestinal metaplasia and dysplasia following endoscopic ablation of Barrett’s esophagus. *Gastroenterology* 2019;156:S-284.

