Semin Liver Dis 2015; 35(01): 036-042
DOI: 10.1055/s-0034-1397347
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

MicroRNAs in Alcoholic Liver Disease

Gyongyi Szabo
1   Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
,
Abhishek Satishchandran
1   Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
29 January 2015 (online)

Abstract

Alcoholic liver disease (ALD) is characterized by hepatocyte damage, inflammatory cell activation and increased intestinal permeability leading to the clinical manifestations of alcoholic hepatitis. Selected members of the family of microRNAs are affected by alcohol, resulting in an abnormal miRNA profile in the liver and circulation in ALD. Increasing evidence suggests that mRNAs that regulate inflammation, lipid metabolism and promote cancer are affected by excessive alcohol administration in mouse models of ALD. This communication highlights recent findings in miRNA expression and functions as they relate to the pathogenesis of ALD. The cell-specific distribution of miRNAs, as well as the significance of circulating extracellular miRNAs, is discussed as potential biomarkers. Finally, the prospects of miRNA-based therapies are evaluated in ALD.

 
  • References

  • 1 Ambros V. The functions of animal microRNAs. Nature 2004; 431 (7006) 350-355
  • 2 Zamore PD, Haley B. Ribo-gnome: the big world of small RNAs. Science 2005; 309 (5740) 1519-1524
  • 3 Barringhaus KG, Zamore PD. MicroRNAs: regulating a change of heart. Circulation 2009; 119 (16) 2217-2224
  • 4 Kim DH, Saetrom P, Snøve Jr O, Rossi JJ. MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci U S A 2008; 105 (42) 16230-16235
  • 5 Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136 (2) 215-233
  • 6 Krek A, Grün D, Poy MN , et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37 (5) 495-500
  • 7 Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Dev Cell 2006; 11 (4) 441-450
  • 8 Chekulaeva M, Filipowicz W. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 2009; 21 (3) 452-460
  • 9 Weber JA, Baxter DH, Zhang S , et al. The microRNA spectrum in 12 body fluids. Clin Chem 2010; 56 (11) 1733-1741
  • 10 Mitchell PS, Parkin RK, Kroh EM , et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 2008; 105 (30) 10513-10518
  • 11 Shigehara K, Yokomuro S, Ishibashi O , et al. Real-time PCR-based analysis of the human bile microRNAome identifies miR-9 as a potential diagnostic biomarker for biliary tract cancer. PLoS ONE 2011; 6 (8) e23584
  • 12 Bala S, Petrasek J, Mundkur S , et al. Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology 2012; 56 (5) 1946-1957
  • 13 Szabo G, Bala S. MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol 2013; 10 (9) 542-552
  • 14 O'Shea RS, Dasarathy S, McCullough AJ ; Practice Guideline Committee of the American Association for the Study of Liver Diseases; Practice Parameters Committee of the American College of Gastroenterology. Alcoholic liver disease. Hepatology 2010; 51 (1) 307-328
  • 15 Petrasek J, Iracheta-Vellve A, Csak T , et al. STING-IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease. Proc Natl Acad Sci U S A 2013; 110 (41) 16544-16549
  • 16 Adachi Y, Moore LE, Bradford BU, Gao W, Thurman RG. Antibiotics prevent liver injury in rats following long-term exposure to ethanol. Gastroenterology 1995; 108 (1) 218-224
  • 17 Mandrekar P, Szabo G. Signalling pathways in alcohol-induced liver inflammation. J Hepatol 2009; 50 (6) 1258-1266
  • 18 Gao B, Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 2011; 141 (5) 1572-1585
  • 19 Gao B, Seki E, Brenner DA , et al. Innate immunity in alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol 2011; 300 (4) G516-G525
  • 20 Massey VL, Arteel GE. Acute alcohol-induced liver injury. Front Phys 2012; 3: 193
  • 21 Szabo G, Petrasek J, Bala S. Innate immunity and alcoholic liver disease. Dig Dis 2012; 30 (Suppl. 01) 55-60
  • 22 Szabo G, Bala S. Alcoholic liver disease and the gut-liver axis. World J Gastroenterol 2010; 16 (11) 1321-1329
  • 23 Szabo G, Bala S, Petrasek J, Gattu A. Gut-liver axis and sensing microbes. Dig Dis 2010; 28 (6) 737-744
  • 24 Keshavarzian A, Farhadi A, Forsyth CB , et al. Evidence that chronic alcohol exposure promotes intestinal oxidative stress, intestinal hyperpermeability and endotoxemia prior to development of alcoholic steatohepatitis in rats. J Hepatol 2009; 50 (3) 538-547
  • 25 Rao R. Endotoxemia and gut barrier dysfunction in alcoholic liver disease. Hepatology 2009; 50 (2) 638-644
  • 26 Bode C, Bode JC. Alcohol's role in gastrointestinal tract disorders. Alcohol Health Res World 1997; 21 (1) 76-83
  • 27 Thurman RG, Bradford BU, Iimuro Y , et al. Role of Kupffer cells, endotoxin and free radicals in hepatotoxicity due to prolonged alcohol consumption: studies in female and male rats. J Nutr 1997; 127 (5, Suppl): 903S-906S
  • 28 Tang Y, Banan A, Forsyth CB , et al. Effect of alcohol on miR-212 expression in intestinal epithelial cells and its potential role in alcoholic liver disease. Alcohol Clin Exp Res 2008; 32 (2) 355-364
  • 29 McClain CJ, Barve S, Deaciuc I, Kugelmas M, Hill D. Cytokines in alcoholic liver disease. Semin Liver Dis 1999; 19 (2) 205-219
  • 30 Kishore R, McMullen MR, Cocuzzi E, Nagy LE. Lipopolysaccharide-mediated signal transduction: stabilization of TNF-alpha mRNA contributes to increased lipopolysaccharide-stimulated TNF-alpha production by Kupffer cells after chronic ethanol feeding. Comp Hepatol 2004; 3 (Suppl. 01) S31
  • 31 Hines IN, Wheeler MD. Recent advances in alcoholic liver disease III. Role of the innate immune response in alcoholic hepatitis. Am J Physiol Gastrointest Liver Physiol 2004; 287 (2) G310-G314
  • 32 Hritz I, Mandrekar P, Velayudham A , et al. The critical role of toll-like receptor (TLR) 4 in alcoholic liver disease is independent of the common TLR adapter MyD88. Hepatology 2008; 48 (4) 1224-1231
  • 33 O'Connell RM, Rao DS, Baltimore D. microRNA regulation of inflammatory responses. Annu Rev Immunol 2012; 30: 295-312
  • 34 O'Neill LA, Sheedy FJ, McCoy CE. MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 2011; 11 (3) 163-175
  • 35 Bala S, Szabo G. MicroRNA signature in alcoholic liver disease. Int J Hepatol 2012; 2012: 498232
  • 36 Alam MM, O'Neill LA. MicroRNAs and the resolution phase of inflammation in macrophages. Eur J Immunol 2011; 41 (9) 2482-2485
  • 37 Bala S, Marcos M, Kodys K , et al. Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor alpha (TNFalpha) production via increased mRNA half-life in alcoholic liver disease. J Biol Chem 2011; 286 (2) 1436-1444
  • 38 Mandrekar P, Bala S, Catalano D, Kodys K, Szabo G. The opposite effects of acute and chronic alcohol on lipopolysaccharide-induced inflammation are linked to IRAK-M in human monocytes. J Immunol 2009; 183 (2) 1320-1327
  • 39 Wanet A, Tacheny A, Arnould T, Renard P. miR-212/132 expression and functions: within and beyond the neuronal compartment. Nucleic Acids Res 2012; 40 (11) 4742-4753
  • 40 Lippai D, Bala S, Csak T, Kurt-Jones EA, Szabo G. Chronic alcohol-induced microRNA-155 contributes to neuroinflammation in a TLR4-dependent manner in mice. PLoS ONE 2013; 8 (8) e70945
  • 41 Lippai D, Bala S, Catalano D, Kodys K, Szabo G. Micro-RNA-155 deficiency prevents alcohol-induced serum endotoxin increase and small bowel inflammation in mice. Alcohol Clin Exp Res 2014; 38 (8) 2217-2224
  • 42 Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol 2002; 12 (9) 735-739
  • 43 Xu H, He JH, Xiao ZD , et al. Liver-enriched transcription factors regulate microRNA-122 that targets CUTL1 during liver development. Hepatology 2010; 52 (4) 1431-1442
  • 44 Krützfeldt J, Rajewsky N, Braich R , et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 2005; 438 (7068) 685-689
  • 45 Girard M, Jacquemin E, Munnich A, Lyonnet S, Henrion-Caude A. miR-122, a paradigm for the role of microRNAs in the liver. J Hepatol 2008; 48 (4) 648-656
  • 46 Esau C, Davis S, Murray SF , et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006; 3 (2) 87-98
  • 47 Hsu SH, Wang B, Kota J , et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest 2012; 122 (8) 2871-2883
  • 48 Tsai WC, Hsu SD, Hsu CS , et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest 2012; 122 (8) 2884-2897
  • 49 Xie J, Ameres SL, Friedline R , et al. Long-term, efficient inhibition of microRNA function in mice using rAAV vectors. Nat Methods 2012; 9 (4) 403-409
  • 50 Burchard J, Zhang C, Liu AM , et al. microRNA-122 as a regulator of mitochondrial metabolic gene network in hepatocellular carcinoma. Mol Syst Biol 2010; 6: 402
  • 51 Elmén J, Lindow M, Schütz S , et al. LNA-mediated microRNA silencing in non-human primates. Nature 2008; 452 (7189) 896-899
  • 52 Marcellin P, Asselah T, Boyer N. Fibrosis and disease progression in hepatitis C. Hepatology 2002; 36 (5) (Suppl. 01) S47-S56
  • 53 Scheel TK, Rice CM. Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nat Med 2013; 19 (7) 837-849
  • 54 Hajarizadeh B, Grebely J, Dore GJ. Epidemiology and natural history of HCV infection. Nat Rev Gastroenterol Hepatol 2013; 10 (9) 553-562
  • 55 Szabo G, Wands JR, Eken A , et al. Alcohol and hepatitis C virus—interactions in immune dysfunctions and liver damage. Alcohol Clin Exp Res 2010; 34 (10) 1675-1686
  • 56 Szabo G, Aloman C, Polyak SJ, Weinman SA, Wands J, Zakhari S. Hepatitis C infection and alcohol use: a dangerous mix for the liver and antiviral immunity. Alcohol Clin Exp Res 2006; 30 (4) 709-719
  • 57 Jopling CL, Schütz S, Sarnow P. Position-dependent function for a tandem microRNA miR-122-binding site located in the hepatitis C virus RNA genome. Cell Host Microbe 2008; 4 (1) 77-85
  • 58 Jopling CL. Targeting microRNA-122 to treat hepatitis C virus infection. Viruses 2010; 2 (7) 1382-1393
  • 59 Janssen HL, Reesink HW, Lawitz EJ , et al. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013; 368 (18) 1685-1694
  • 60 Lindow M, Kauppinen S. Discovering the first microRNA-targeted drug. J Cell Biol 2012; 199 (3) 407-412
  • 61 Hou W, Bukong TN, Kodys K, Szabo G. Alcohol facilitates HCV RNA replication via up-regulation of miR-122 expression and inhibition of cyclin G1 in human hepatoma cells. Alcohol Clin Exp Res 2013; 37 (4) 599-608
  • 62 Bukong TN, Hou W, Kodys K, Szabo G. Ethanol facilitates hepatitis C virus replication via up-regulation of GW182 and heat shock protein 90 in human hepatoma cells. Hepatology 2013; 57 (1) 70-80
  • 63 Li J, Ghazwani M, Zhang Y , et al. miR-122 regulates collagen production via targeting hepatic stellate cells and suppressing P4HA1 expression. J Hepatol 2013; 58 (3) 522-528
  • 64 Miranda RC, Pietrzykowski AZ, Tang Y , et al. MicroRNAs: master regulators of ethanol abuse and toxicity?. Alcohol Clin Exp Res 2010; 34 (4) 575-587
  • 65 Kota J, Chivukula RR, O'Donnell KA , et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009; 137 (6) 1005-1017
  • 66 Coulouarn C, Factor VM, Andersen JB, Durkin ME, Thorgeirsson SS. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 2009; 28 (40) 3526-3536
  • 67 Bai S, Nasser MW, Wang B , et al. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem 2009; 284 (46) 32015-32027
  • 68 Zeng C, Wang R, Li D , et al. A novel GSK-3 beta-C/EBP alpha-miR-122-insulin-like growth factor 1 receptor regulatory circuitry in human hepatocellular carcinoma. Hepatology 2010; 52 (5) 1702-1712
  • 69 Mizuguchi Y, Mishima T, Yokomuro S , et al. Sequencing and bioinformatics-based analyses of the microRNA transcriptome in hepatitis B-related hepatocellular carcinoma. PLoS ONE 2011; 6 (1) e15304
  • 70 Karakatsanis A, Papaconstantinou I, Gazouli M, Lyberopoulou A, Polymeneas G, Voros D. Expression of microRNAs, miR-21, miR-31, miR-122, miR-145, miR-146a, miR-200c, miR-221, miR-222, and miR-223 in patients with hepatocellular carcinoma or intrahepatic cholangiocarcinoma and its prognostic significance. Mol Carcinog 2013; 52 (4) 297-303
  • 71 Fornari F, Gramantieri L, Giovannini C , et al. MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res 2009; 69 (14) 5761-5767
  • 72 Xu J, Zhu X, Wu L , et al. MicroRNA-122 suppresses cell proliferation and induces cell apoptosis in hepatocellular carcinoma by directly targeting Wnt/β-catenin pathway. Liver Int 2012; 32 (5) 752-760
  • 73 Zhang X, Zhang Z, Dai F , et al. Comparison of circulating, hepatocyte specific messenger RNA and microRNA as biomarkers for chronic hepatitis B and C. PLoS ONE 2014; 9 (3) e92112
  • 74 Ding X, Ding J, Ning J , et al. Circulating microRNA-122 as a potential biomarker for liver injury. Mol Med Rep 2012; 5 (6) 1428-1432
  • 75 Elfimova N, Schlattjan M, Sowa JP, Dienes HP, Canbay A, Odenthal M. Circulating microRNAs: promising candidates serving as novel biomarkers of acute hepatitis. Front Phys 2012; 3: 476
  • 76 Szabo G, Sarnow P, Bala S. MicroRNA silencing and the development of novel therapies for liver disease. J Hepatol 2012; 57 (2) 462-466
  • 77 Momen-Heravi F, Bala S, Bukong T, Szabo G. Exosome-mediated delivery of functionally active miRNA-155 inhibitor to macrophages. Nanomedicine (Lond) 2014; 10 (7) 1517-1527